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TECHNICAL ABSTRACTS

TWO-DIMENSIONAL PREDICTIONS OF POLLUTANT EMISSION AND HEAT TRANSFER CHARACTERISTICS
IN POROUS BURNERS: A VALIDATION STUDY
I. Malico, X.-Y. Zhou and J.C.F. Pereira, Mechanical Engineering Department, Instituto Superior
Tecnico, Av. Rovisco Pais, Lisbon, Portugal (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

Several mathematical models with varying degrees of sophistication have been applied to
study combustion and heat transfer in inert porous media. The majority of such models focus
on one-dimensional geometries and should not be applied to the study of complex, real porous
burners.
In this study, a two-dimensional numerical model was developed to predict heat transfer and
premixed combustion inside a porous burner. Separate energy equations for the solid and gas
phase mechanism was described by the skeletal mechanism of Glarborg et al. (1992) that consists
of 77 reactions and 26 species. The two-dimensional discrete ordinates method was used to describe
the radiative transfer equation and the porous media was assumed to emit, absorb and
isotropically scatter radiation. The finite difference/control volume approach was used and the
SIMPLE algorithm applied. Since the mass fraction conservation equations are stiff, an operator
splitting method was used to solve them.
Predicted gas and solid centerline temperatures were compared with available experimental data
for a porous burner with integrated heat exchanger prototype developed for household
applications. The results show satisfactory agreement between the predictions and the
experimental data. Predicted CO and NOx emissions were also compared with experimental data.
Good predictions of CO and overestimation of NOx were obtained. Radiation was found to be very
important in the modeling of the porous burner and an accurate radiative model and correct
radiative properties essential for the correct prediction of the overall performance of a porous
media combustor. Unfortunately, a good database for the radiative properties of some commonly
used porous media is lacking, requiring sensitivity studies. The present multidimensional model
proved to give interesting engineering solutions for the fluid flow, heat transfer, pollutant
emissions and combustion occurring in inert porous media. To our knowledge, it is the first time
that an attempt to predict the two-dimensional fields of these quantities for a porous burner
prototype is made. Since nowadays it is impossible to obtain three-dimensional flow predictions
inside each pore, additional work is required in order to gain a better understanding of the
combustion inside porous inert media, such as the inclusion of the reactions on the solid surfaces of
the solid matrix.
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CHEMICAL STRUCTURES OF METHANE-AIR FILTRATION COMBUSTION WAVES FOR FUEL-LEAN AND
FUEL-RICH CONDITIONS
L.A. Kennedy, J.P. Binque, M.K. Drayton, A.V. Saveliev, Department of Mechanical Engineering,
University of Illinois at Chicago, Chicago, IL 60607, and S.I. Foutko, Chemical Physics Laboratory,
Heat and Mass Transfer Institute, Minsk, Belarus, (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

Filtration combustion of gases within inert porous media has been extensively studied during
the last decade. Particular attention was given to the low-velocity regime of filtration
combustion, characterized by low degree of thermal non-equilibrium between solid and gas
phases. In this regime, the strong interfacial heat exchange allows so-called superadiabatic
combustion of gaseous mixtures with very low adiabatic combustion temperatures. Earlier
work focused exclusively on lean combustion, studying the enhancement of the maximum
temperature under these conditions. Unfortunately, there is an absence of work covering the
broader range of equivalence ratios from lean to rich mixtures.
In the present work, results of a comparative study of filtration combustion from lean to rich
mixtures are presented with the emphasis on the chemistry of the combustion waves.
Temperature, velocity and chemical products of the combustion waves are studied
experimentally in the range of equivalence ratios from 0.2 to 2.5. Downstream (superadiabatic)
wave propagation is observed for ultra-lean (ϕ≤0.45) an ultra-rich (ϕ≥1.6) mixtures. Upstream
(underadiabatic) propagation corresponds to the range of equivalence ratios from 0.45 to 1.6.
It is found, that with the equal heat content, rich mixtures have essentially higher combustion
temperatures than corresponding lean mixtures.
Stable superadiabatic combustion of ultra-rich mixtures is observed experimentally for the
region of equivalence ratios above 1.6. In this region, complete combustion could not be
achieved due to the low oxygen content in the mixture. This results in formation of partial
oxidation products such as H2 , CO and C2 hydrocarbons. These products became dominant for
equivalence ratios above 2, where up to 60% of methane is converted to CO and H2 .
Predictions of a numerical model based on a one-temperature approximation and multistep gas
phase combustion mechanism, is in good agreement with experimental data, including combustion
temperatures and combustion products. Reaction pathway and sensitivity analysis shows
significant changes in the combustion mechanism from ultra-lean to ultra-rich conditions. C1-
mechanism, dominant for ultra-lean conditions, is suppressed by C2-mechanism for ultra-rich
mixtures.
Kinetic modeling revealed that the ultra-rich superadiabatic combustion wave is composed of an
exothermic reaction zone followed by an endothermic one. In the exothermic wave, partial
oxidation of methane takes place with formation of hydrogen, carbon monoxide and water.
Subsequently, the reaction of "steam reforming" occurs in the endothermic region where unburned
methane is reformed by water with production of additional hydrogen and carbon monoxide.

COMBUSTION OF SOLID WASTE IN A PULSE INCINERATOR
T. Kan, L.M. Matta, J.I. Jagoda and B.T. Zinn, Georgia Institute of Technology, Atlanta, GA,
(Work-in-Progress Poster Presented at the 27th International Symposium on Combustion, Held in
Boulder CO, August 1998).

Increasingly strict regulations on the disposal of waste on board ships has generated new
interest in compact, high efficiency, low pollution incinerators. It is the purpose of this study
to investigate whether a pulse incinerator could meet these criteria.
The effect of acoustic oscillations on the combustion of simulated solid wastes in a pulse
incinerator were studied. The incinerator consists of a rectangular metal box with inside
dimensions 108x20x12 cm. Air enters through a 2.5 cm diameter pipe and exhaust gases leave
through a 5.0 cm diameter pipe. Two 13x13 cm fused quartz windows located in opposite side
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panels near the sample location provide optical access to the combustion region. An igniter,
fitted to the bottom of the incinerator, provides a repeatable ignition process at the beginning
of each test. Acoustic oscillations inside the cavity are driven by two 100 W Atlas siren drivers
through a closed loop control system. A flush mounted, Kistler piezoelectric pressure
transducer, located next to the solid waste surrogate, monitors the pressure oscillations during
combustion. Gas samples are extracted from the exhaust line and passed through a sampling
line into Beckman CO2 , CO and NOx analyzers. The CO2 trace was used to characterize the
burning rate and combustion time because CO2 is the primary combustion product. When the
surrogate waste burns with a visible flame prior to smoldering (cardboard samples), flaming
and smoldering combustion times were recorded separately. Total amounts of CO2 , CO and
NOx emitted are calculated by integrating CO2 , CO and NOx traces.
Corrugated cardboard and charcoal were chosen as waste surrogates because of their different
combustion characteristics. Cardboard burns with a luminous, gas phase flame followed by a
solid phase, smoldering combustion. Charcoal, on the other hand, burns mainly by
smoldering. For both fuels, it was shown that pulsations greatly increase combustion rates.
This enhancement was of the order of 65% whether the sample was smoldering or burning
with a flame. While the increase in burning rate in the presence of a flame appears to have
been caused by increased pyrolysis of the fuel, the large smoldering rate enhancement seems
to be due to an increase in the rate of diffusion of air to and combustion products from the
burning surface. The pulsations also enhanced the rates at which CO and NOx are produced.
However, because the increased burning rates resulted in shortened combustion times, the
total amount of CO and NOx emitted was not significantly affected by the pulsations.
In order to determine to what extent the observed acoustic enhancement of the combustion
process would persist in more turbulent flows found in practical incinerators, the Reynolds
number of the flow through the incinerator was varied between 4,700 and 47,000. In the
absence of pulsations, increasing the Reynolds number resulted in increased burning rates.
However, when combustion occurred in the presence of high amplitude acoustic oscillations
(158 dB), the combustion time was observed to be independent of the Reynolds number. At
this dB level the charcoals burned twice as fast as in steady flow at the highest Reynolds
number (Re=47,000). The total CO and NOx emissions were approximately the same regardless
of Reynolds number and the presence or absence of pulsations.
In summary, the above results suggest that pulse incinerators will be able to handle
significantly increased waste throughputs without increased pollutant emissions.

CO-FIRING HIGH SULFUR COAL WITH REFUSE DERIVED FUELS
W. Xie, K. Liu, W.-P. Pan and J.T. Riley, Department of Chemistry, Western Kentucky University,
KY 42101 (Work-in-Progress Poster Presented at the 27th International Symposium on
Combustion, Held in Boulder CO, August 1998).

The ability to capture SO2 and halogens is one of the most important advantages of fluidized
bed combustion (FBC). This project was designed to evaluate the combustion performance of
and emissions from a fluidized bed combustor during the co-firing of mixtures of high sulfur
and high chlorine coals or municipal solid waste (MSW). The experimental investigation was
carried out on a bench scale laboratory AFBC system with the 0.3 m internal diameter and 4.5 m
effective height at Western Kentucky University. During experiments, the PVC was mixed with
coal in different weight percentages, and the mixture was fed into the FB combustor by screw
feeder. The Ca/S mole rate was kept constant at approximately 3. The experimental results
indicated that chloride addition dramatically decreases the SO2 concentration in flue gas. At
the same time, the sulfur content increases in both the fly ash and bed ash.
The effect of sulfur dioxide on the formation of molecular chlorine during combustion
processes was also examined in this study. Sulfur dioxide has been proven to be an effective
inhibitor for the formation of molecular chlorine through the reaction:
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Cl2+SO2+H2O→2HCl+SO3

and subsequently, the production of chlorinated organic. The co-firing of MSW and high sulfur
coal seems to be a promising method to reuse MSW in the future.

OXIDATION RATES OF SOOT PARTICULATES WITH OH AND NO UP TO VERY HIGH TEMPERATURES IN
SHOCK WAVES
P. Cadman, R.J. Denning and I.L. Morris, Combustion Physics Group, University of Wales,
Aberystwyth SY23 BZ, Wales UK (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

The oxidation rates of soot particulate aerosols were studied behind reflected shock waves
between 1150 and 3000 K and pressures 3-15 bar in dilute H2 /O2 mixtures in argon. The rates
found in the region 1150-1800 K obeyed Arrhenius kinetics and were fast compared to those in
O2 /argon or NO/argon. Above 1800 K the rate showed non-Arrhenius behavior. The rates went
through a maximum in the region above 1800 K before decreasing but then showed a further
increase at still higher temperatures. The rates exhibited first order dependence on H2 but were
independent of O2 below about 1800 K. This is different to the order of 0.5 obtained for the O2

alone. It is suggested that the hydroxyl radical is the most reactive species in these mixtures with a
surface collision probability of reaction α≈0.25(±0.1) between 1150-1800 K. Above this temperature
range the apparent value of α decreased, due to the apparent decrease in rate. The reasons for this
are not clear and are discussed in the paper.
The rate of disappearance of soot in nitric oxide/argon mixtures at pressures of 5-7 bar was
measured between 2000-3300 K. These rates gave linear Arrhenius plots and were found to be first
order in NO. The rate of reaction of soot with NO can be represented by the equation:

αNO=4.08 exp (-135800 J/RT)
where α=the surface collision probability.
With argon only present (pressures 11-13 bar) and at temperatures above 2900 K, the soot
particulates were found to disappear slowly. Between 3200-3800 K this rate became significant and
the process had an activation energy of 215 kJ/mol which is much less than the enthalpy of
vaporization of carbon.
At temperatures above 2500 K the temperature dependence and rates of reaction of soot in the
presence of O2 , O2 /H2 , NO were not dissimilar to those in argon. The effect can be explained using
the results found by other workers investigating the laser heating of soot in flames by LII (laser
induced incandescence) which produced a surface temperature of around 4000 K similar to the
temperatures used in some of this work. LII heating produced the formation of C2 and C3

species. It is suggested that similar reactions can also occur in very high temperature thermally
heated soot particulates in this work.

EFFECT OF LOWER STATE ROTATIONAL ENERGY TRANSFER UPON TEMPERATURE MEASUREMENTS
MADE WITH LASER INDUCED FLUORESCENCE
E.W. Rothe, Department of Chemical Engineering and Materials Science, Wayne State University,
Detroit, MI 48202, and J.W. Daily, Department of Mechanical Engineering, University of Colorado
at Boulder, Boulder, CO 90309 (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

Laser induced fluorescence (LIF) is often used to deduce gas temperatures from the relative
populations of two rotational states. As a realistic example, we model the atmospheric combustion
of methane with air, with products that are 2000 K. We calculate the ratio of fluorescence
intensities that would be induced by doubled dye-laser light near 283 nm, by means of the A←X,
1←0, P1(7) and Q2(11) transitions in OH. Here we show that the ratio of LIF signals from those
transitions, and thus the deduced temperature, is sensitive to laser intensity. We emphasize the
competition between laser-pumping of molecules out of the lower rotational state and of rotational
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energy transfer (RET) collisions into that state. RET occurs in both the X- and A-states. Further,
electronic (A→X) quenching occurs, usually into many vibrational states. Even for an
idealized situation, with the same quenching rate for both A-state species, and without RET
collisions in the A-state, the deduced temperature can vary by factors of two or three. The laser
spectral intensity dependence of the fluorescence ratio can also depend heavily upon the value
of the RET coefficients within the X-state. RET reduces the sensitivity of the observed signal to
the laser spectral intensity. However the conversion of a measured fluorescence ratio to
temperature is particularly difficult, because RET rates and quenching rates can be a function
of local conditions and of the rotational state being populated.
While RET leads to much higher signals than would otherwise occur, these signals are difficult
to interpret. They are dependent on location and on state-sensitive rate constants. Calibration
can be done only for laser pumping that is sufficiently small that RET can maintain the
original population of state 1. An alternative solution is to reduce the laser pulse length so
that only a few molecules can flow into the ground state via RET during the time the laser is
on.

ROTATIONAL COHERENT ANTI-STOKES RAMAN SPECTROSCOPY FOR TEMPERATURE AND OXYGEN
CONCENTRATION MEASUREMENTS IN PRACTICAL COMBUSTION DEVICES
P.-E. Bengtsson, J. Bood, C. Brackmann and M. Alden, Division of Combustion Physics, Lund
Institute of Technology, P.O. Box 118, S-221 00 Lund, Sweden (Work-in-Progress Poster Presented
at the 27th International Symposium on Combustion, Held in Boulder CO, August 1998).

Coherent anti-Stokes Raman Spectroscopy (CARS) is a laser-based diagnostic technique which
is used for non-intrusive temperature measurements in combustion processes. This poster
concerns a variant of CARS called dual-broadband rotational coherent anti-Stokes Raman
spectroscopy (DB-RCARS). DB-RCARS can be used for temperature and relative oxygen
concentration measurements. The best accuracy of the technique is achieved in the
temperature range up to 1500 K at pressures from atmospheric to a few MPa.
In DB-RCARS, three laser beams are focused to a common intersection point from which a
signal is generated if suitable molecular resonances are available. The signal is generated as a
laserlike beam. The spectrally resolved signal is analyzed by fitting its shape to a library of
theoretically calculated spectra. Temperature evaluation is normally made from nitrogen
spectra since nitrogen is inert and high concentrations of nitrogen are present in air-fed
combustion.
In this poster some work on DB-RCARS for practical applications are described; 1) cycle-
resolved temperature measurements in a spark ignition engine for knock studies, 2)
measurements of temperature and relative oxygen concentrations after a catalytic combustor,
and 3) a method for spectral discrimination of stray light, which is of special importance in
practical applications.
The phenomenon of knock in spark ignition engines is studied in a project where the sub-
projects are: evaluation of knock detection methods, modeling of flow and flame propagation,
modeling of chemical kinetics, thermal analysis of heat transfer, and our sub-project on laser
diagnostic temperature measurements using DB-RCARS. Cycle-resolved temperature
measurements were performed in the unburned fuel/air mixture ahead of the propagating
flame front at pressure below 2 MPa and temperatures below 1000 K. This is a range of
conditions where the pure rotational CARS technique both has a high accuracy and a high
precision. Measurements were performed at different crank angle degrees in the engine cycle,
at different distances from the cylinder wall, and for different fuel mixtures.
In a project with the purpose to develop ceramic components for a gas turbine, DB-RCARS
measurements were performed after a catalytic combustor section. Profiles of temperature and
relative oxygen concentrations were measured across the section for four different running
conditions. All measurements were performed remotely, meaning that the focusing and
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recollimating lens in the setup were translated up to 10 cm during the measurements. High
temperatures and low relative oxygen concentrations indicated a high efficiency at the central axis,
and lower efficiency close to the wall. Also, emission measurements using conventional methods
were performed after the catalytic combustion section.
In practical measurements using dual-broadband rotational CARS the major experimental problem
is stray light from one of the primary laser beams. This radiation may interfere with the registered
CARS spectrum at the detector. An atomic filter consisting of a sodium-seeded flame is presented as
a solution to this problem.

CARS TEMPERATURE MEASUREMENTS IN 1-D AND 2-D LAMINAR FLAMES
R. Knikker, M. Versluis and T. van der Meer, Thermal and Fluid Sciences, Department of Applied
Physics, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands, and K.
Bosschaart and P. de Goey, Section Energy and Process Technology, Faculty of Mechanical
Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands (Work-in-Progress Poster Presented at the 27th International Symposium on
Combustion, Held in Boulder CO, August 1998).

Numerical chemical reaction models are used to accurately model for example industrial or
household furnaces. To validate these models quantitative information on flame temperatures
with a high spatial resolution is required using a measurement technique that does not perturb
the flame. This was accomplished using broadband vibrational coherent anti-Stokes Raman
spectroscopy (CARS). CARS temperature data were collected at a high spatial resolution and close to
high temperature gradients for a set of 1-D and 2-D flames. Due to the geometrical properties of
the flames the experiment could be aligned in such a way that the temperature gradients were
perpendicular to the direction of the laser beams. We have investigated and mastered
problems related to detection (using a high dynamical range back-illuminated CCD camera)
and laser instability (shot-to-shot fluctuations and long-term spectral shift of the Stokes laser
profile and, in the flame, beam steering). Uncertainties in the CARS fitting code (the non-
resonant susceptibility, non-resonant background, detector background and instrumental slit
width) and interfering laser-induced processes, such as stimulated Raman pumping, were also
analyzed.
In this poster we will present accurate temperature measurements, along with calculated
profiles, obtained for adiabatic flat flames and a 2-D V-flame. The V-flame, also known as the
inverted flame, burns on a double slit burner. The burner is used to investigate the
stabilization of laminar premixed flames. The stabilization point of the V-flame is not
surrounded by air, but instead by the fuel/air mixture flowing out of the slits. Consequently,
the surrounding atmosphere does not affect the stabilization of a V-flame, as is the case in the
conventional Bunsen flame. These flames are therefore well suited to study blow-off mechanisms
of Bunsen-type flames.
A series of measurements and calculations were also performed in a single slit burner. This burner
is an idealized two-dimensional form of the well-know Bunsen burner. Modeling of this flame is
done with detailed chemistry. To define boundary conditions in the numerical model the 2-D
Bunsen flame was confined between two plates set at a fixed temperature.

METHANE IGNITION PROMOTED BY NOX

M. Jazbec and B.S. Haynes, Department of Chemical Engineering, University of Sydney, Sydney,
Australia, and F.J. Barnes and J.H. Bromly, AlintaGas, Perth, Australia (Work-in-Progress Poster
Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August 1998).

Small amounts of nitrogen oxides have been shown to promote the oxidation of low
concentrations (usually the order of hundreds of parts per million) of fuels at temperatures
between 500 and 1000 K. The question as to the extent to which this effect may be significant
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at higher fuel concentrations has not been addressed in any detail, despite the potential
importance of this phenomenon to ignition such as autoignition, in engines, or in gassy mine
environments where NOx , fuel (mostly CH4), and oxygen coexist.
In this work, we describe experimental and modeling studies of the effect of NO and NO2 (0 to
400 ppm) on the ignition of methane (up to 2.5%) in air. The experiments are carried out in a
flow reactor at atmospheric pressure and at temperatures from 820-920 K, with a residence
time of the order of 2 seconds. Under the conditions studied, and in the absence of NOx , no
ignition of CH4 is observed at temperatures below 900 K. However, when NOx is present as
either NO or NO2 , there is a substantial reduction in the ignition temperature, to 870 K with
5 ppm NOx , and to 820 K with 400 ppm NOx . The presence of NOx promotes CH4

consumption even in the absence of an ignition.
The high concentrations of CH4 employed in this work are capable of giving rise to a
substantial product temperature rise which cannot be modeled accurately for the tubular flow
reactor. However, a model validated previously for the low-temperature ignition of low
concentrations of CH4 in the presence of NOx describes the results for CH4 , CO, CO2 and
C2-species reasonably well under conditions where less than 20% conversion of CH4 occurs,
when the mixture is expected to be nearly isothermal.
The chief mechanism of promotion of the oxidation of CH4 is the same as previously proposed,
namely that NO converts the chain terminating methylperoxy radical into reactive methoxy:

CH3O2+NO→CH3O+NO2

These results demonstrate the importance of the NOx-promoted oxidation of reasonably high
concentrations of CH4 at low temperatures, and the possibility of premature (low-
temperature) ignition as a result of this effect. They also confirm the validity of the model
developed previously.

MEASUREMENT OF LOCAL FLAME-FRONT STRUCTURE IN TURBULENT PREMIXED FLAME
Y. Ikeda, J. Kojima and T. Nakajima, Department of Mechanical Engineering, Kobe University,
Rokkodai, Nada, Kobe 657, Japan, and F. Akamatsu and M. Katsuki, Department of Mechanical
Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565, Japan (Work-in-Progress
Poster Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August
1998).

LIF techniques have been improved to be able to investigate the flame front structure, while
the time-series measurement of the flame-front has been obtained in order to understand the
detail of flame-front structure and flame propagating speed.
Local chemiluminescence measurements of OH, CH and C2 radicals were carried out in
turbulent premixed methane flame to make clear the details of flame-front structures and
chemical reactions in the reaction zone. For this measurement, specially designed Cassegrain
Optics were developed, which have a high spatial resolution as small as an LDV measurement
volume. Furthermore, to achieve a high temporal resolution, each chemiluminescence was
detected by a photomultiplier tube at a sampling rate of 250 kHz.
Simultaneous measurements of these three radicals and velocity by LDV were performed to
obtain flame-front structure, flame propagating speed and flame thickness. Local Damkoler
number was measured directly at the flame-front and its fine scale demonstrated.
The probability density function (PDF) of OH emissions showed bi-modal peaks across the
flame-front location corresponding to wrinkled laminar flame or flamelet region. The first
peak of the OH PDF corresponded to the high temperature region outside of the flame cone
and the secondary peak was associated with chemical reaction at the primary reaction zone.
Time series signals of local OH, CH and C2 emission intensities in wrinkled laminar flame
region showed irregular peaks which, however, correlate in the three chemiluminescence
signals. These results indicated strong linkage between OH-CH-C2 reactions at wrinkled
laminar flame-front. The flame-front thickness measured by CH and C2 emissions were 0.1 and
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0.3 mm, while being about 1.0 mm for OH. Furthermore, local reaction rate and local mixture
strength at the turbulent flame-front are examined from local CH and C2 emission intensities
in comparison with measured databases of these emissions in laminar premixed flame.
A new optical diagnostics method to examine local flame-front structure and flame chemistry
by means of local chemiluminescence measurements has been proposed and its performance
proven.

QUANTITATIVE HYDROXYL TIME-SERIES MEASUREMENTS IN TURBULENT NON-PREMIXED FLAMES
M.W. Renfro, S.D. Pack, G.B. King and N.M. Laurendeau, School of Mechanical Engineering,
Purdue University, West Lafayette, IN 47907 (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

During the past two years, we have presented measurements of both CH and OH fluorescence
time series via picosecond time-resolved laser induced fluorescence (PITLIF). However, these
measurements lacked corrections for variations in the quenching rate coefficients. A rapid,
gated photon-counting system, termed LIFTIME, has been built to allow on-the-fly quenching
corrections to each point of a fluorescence time series. This photon-counting system divides the
fluorescence decay into three equal temporal partitions and integrates the photon count within
each of these areas. These three counts are then used to compute the lifetime, the peak
amplitude of the fluorescence decay, and the flame emission background. The measured
lifetime can then be used to correct the fluorescence time series point by point. Alternatively,
the decay amplitude can be directly interpreted as concentration, as will be shown in the
present work. Following this quenching correction, the time series are calibrated against well-
characterized premixed flames. The result of the combination of PITLIF and LIFTIME is a
system capable of quantitative time-series measurements of naturally occurring minor-species
scalar fluctuations that can be used to develop or test combustion models. For example, the
data can be used along with an assumed power spectral density (PSD), laminar-flamelet
analysis to investigate the interactions between turbulence and chemical reaction.
The present work details the photon-counting system design and presents results of lifetime
and concentration measurements in a series of laminar flames. These measurements are
compared to both modeling and previous LSF measurements as verification of the system's
capabilities. Many of these measurements are made with reduced photon count rates such
that pulse pile-up can be avoided. This approach is common to single photon counting (SPC)
measurements. For application to time-series measurements in turbulent flames, the signal
level must be increased above SPC guidelines such that the background in the computed PSD
does not corrupt the desired information. A pulse pile-up correction will be presented which
utilizes a saturated-and-compare technique. This analysis is similar to convolute-and-compare
techniques which are commonly used to account for instrumentation response in lifetime
measurements. The corrected signal is found to agree with the low-signal measurements in
the same laminar flames. With this correction scheme, the system is capable of processing up
to 40 million photoelectrons per second. Measurements in a buoyant, flickering, laminar
diffusion flame will be presented using the new system, including pulse pile-up correction. This
flame has a dominant 15 Hz frequency which is shown to appear in both the lifetime and
concentration PSDs. However, the second-harmonic frequency is apparent only in the
concentration PSD owing to the shapes of the lifetime and concentration radial profiles.
Finally, measurements for turbulent nonpremixed flames will also be presented at a range of
Reynolds numbers from 2800 to 19,000. In addition to the PSD, the probability density
function (PDF) is computed for each of the reported time series. Both statistics are shown to
require quenching corrections for accurate measurements of minor species concentrations.
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LASER DIAGNOSTICS OF NITRIC OXIDE INSIDE A 2-STROKE DIRECT INJECTION DIESEL ENGINE
G.G.M. Stoffels, E.J. van den Boom, C.M.I. Spaanjaars, N. Dam, W.L. Meerts and J.J. ter Meulen,
Applied Physics, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
(Work-in-Progress Poster Presented at the 27th International Symposium on Combustion, Held in
Boulder CO, August 1998).

Nitric Oxide (NO) is one of the main polluting components in the exhaust gases of diesel
engines. As such, knowledge of the exact timing and location of the sites where it is produced
during the combustion process is of interest for finding means to reduce diesel engine
emissions. Laser diagnostics are arguably the most powerful tool for in situ, non-intrusive
assessment of local NO densities, as evidenced by several recent publications.
Here we present an evaluation of laser induced fluorescence detection of NO inside a small,
optically accessible 2-stroke diesel engine, making an ArF excimer laser (193.4 nm) for
excitation and an Optical Multichannel Analyzer (OMA) for spectrally resolved fluorescence
detection. The combustion chamber of the engine has been made optically accessible by a
25 mm diameter quartz window mounted centrally in the cylinder head (top window). Two
rectangular windows were placed facing each other in the side walls. For the present
experiments both the excitation laser and the induced fluorescence passed through the top
window. This has the advantage that the excitation laser beam enters the observable volume
of the combustion chamber directly, without attenuation.
Dispersed fluorescence spectra are obtained by excitation of the R1(26.5) transition in the
D2Σ+(ν′=0)←X2Π(ν″=1) band. NO fluorescence bands are observed from the directly excited
state, that is the D2Σ+(ν′=0)→X2Π(ν″=3,4,5). All other bands observed can be attributed to
oxygen. At high temperatures (crank angles close to TDC) the absorption spectrum of O2 in the
193 nm wavelength range becomes so dense that it becomes impossible to exclusively excite
NO. The fluorescence bands of the two molecules can, however, still be separated. We will
present a model to convert this fluorescence yield curve to a NO number density curve, taking
into account temperature effects (Boltzmann) and fluorescence quenching as well as laser
intensity and fluorescence attenuation. Measurements were performed for different fuels and
engine loads; results will be discussed and related to the engine heat release rate and in-
cylinder  temperature.
A conclusion pertinent to all engine operating conditions studied is that, in this particular
engine, the bulk of the NO formation occurs relatively late in the stroke (ca. 25-50° aTDC) and
the NO content gradually declines in the colder part of the stroke.

REDUCED EMISSIONS FROM A COMPRESSION IGNITION ENGINE THROUGH BLENDING OF
OXYGENATES WITH DIESEL FUEL
A.S. Cheng, J.R. Torres and R.W. Dibble, University of California, Berkeley CA (Work-in-Progress
Poster Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August
1998).

The benefits of oxygenated fuels and synthetic Fischer-Tropsch diesel are being investigated
with a Cummins B5.9 diesel engine. The experimental engine is a 5.9 liter, direct-injected, in-
line 6-cylinder, turbocharged and aftercooled diesel rated for 175 hp at 2500 rpm. The engine
also is equipped for exhaust gas recirculation (EGR). Emissions of particulate matter (PM),
oxides of nitrogen (NOx), total hydrocarbons (THC), carbon monoxide (CO) and carbon dioxide
(CO2), along with specific fuel consumption (sfc) are being measured during steady state
operation at nine engine speed-load conditions and with the different fuels and fuel blends.
Three oxygenated fuels are being evaluated: diethyl ether (DEE), (C4H10O), dimethoxy methane
(DMM)(C3H8O2) and dimethyl ether (DME)(C2H6O). Each of these fuels are being tested in
concentrations (by volume in conventional diesel) of 5, 10, 20 and 30 percent. DEE and DMM
are also being tested in neat (pure) form, although small amounts of lubricity agents are being
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added to prevent wear to fuel system components. Fischer-Tropsch diesel, obtained through
synthetic conversion from natural gas feedstock, is being tested in neat form only. Results are
being compared to baseline data obtained with conventional diesel fuel.
In addition to measuring PM emissions with standard filter paper techniques, laser light
extinction is being investigated as a alternative, fast-response method to measure exhaust gas
particle concentration. A He-Ne laser beam (0.6 µm) is passed through the center of a 6 ft
section of exhaust pipe, and the resulting laser light intensity is compared to the reference
signal to determine particle concentration. Because initial tests show that levels of extinction
may be too low (that is, low signal strength, even with a 6 ft path length), laser light
scattering will also be investigated. Scattering measurements offer the benefit of providing
information on particle size distribution.
Initial experiments show significant reductions in PM emissions for the oxygenated fuel blends.
For example, at an engine speed-load condition of 1600 rpm and 320 ft-lbs torque (97 hp), a
30% DMM blend reduced PM emissions by 50% compared to baseline diesel. Significant
reductions in THC and CO were also observed. NOx emission levels were unchanged, but with
the reductions in PM emissions, NOx control strategies could be implemented without
producing unacceptable levels of PM. Due to their lower energy density, however, the
oxygenated fuel blends result in higher levels of specific fuel consumption.
Additional fuel blend experiments will be conducted using oxygenates labeled with a
radioactive carbon-14 tracer. Particle samples collected from these tests will be analyzed to
determine the relative contributions to PM from each component of the fuel blend.

FORMATION MECHANISM OF PAH AND FULLERENES IN PREMIXED BENZENE FLAMES
H. Richter, W.J. Grieco and J.B. Howard, Department of Chemical Engineering, Massachusetts
Institute of Technology Cambridge, MA 02139 (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

The investigation of the chemical mechanism of PAH and particle growth in flames is motivated
by data revealing the health effects of combustion generated compounds. A kinetic model
describing the formation of PAH up to a mass of 300 amu and of C60 and C70 fullerenes was
developed and tested against experimental data. Data for key radical species such as H and OH
and species up to 202 amu, measured in the past by Bittner and Howard using MBMS, were
used to test the ability of the present model to predict flame propagation chemistry and the
first growth steps. The predictions for larger PAH and fullerenes were tested against
concentration profiles measured recently by Grieco et al. in a sooting benzene/oxygen flame by
means of state of the art chromatographic techniques. The PAH and fullerene growth process
is mainly based on H-abstraction/acetylene-addition, but the addition of larger units such as
benzene or phenyl and naphthalene or naphthyl is also considered. Species containing five-
membered rings such as acephenanthrylene (202 amu) and cyclopenta[cd]pyrene (226 amu)
are included in the mechanism, and the isomerization of acephenanthrylene is shown to be an
important pathway for fluoranthene formation. Rate coefficients were evaluated carefully and
experimental high temperature data were used whenever possible. Good agreement between
prediction and experiment is achieved for PAH formation, but the model fails to predict PAH
depletion in the postflame zone. This indicates the presence of additional PAH sinks, such as soot
formation, that are not considered in the present model.
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DETERMINATION OF THE CONVERSION DEGREE OF FUEL BOUNDED NITROGEN COMPOUNDS AT THE
COMBUSTION OF LIQUID FUELS
K. Lucka and H. Kohne, Department of Heat and Mass Transfer, Aachen Technical University,
Kopernikusstr. 16, 52056 Aachen, Germany (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

The NO-concentration in the flue gas of furnaces for liquid fuels is the sum of the thermal,
prompt and fuel NO formation. Most measures to reduce NO emissions aim mainly on the
decrease of the maximum temperature and therefore on the thermal NO formation. Recently
the fuel NO formation has become more relevant due to the fact that for modern LowNOx

combustion concepts 30 to 60% of the NO emission result from the conversion of fuelbound
nitrogen to NO. The reduction of the concentration of the fuelbound nitrogen in fuels causes a
high energy demand during the refining process and has not been realized yet because of
economic items.
As a result our investigation provides fundamentals of the conversion degree of fuelbound
nitrogen in technical flames. This is useful in the design of new burnerheads which can
further reduce NO emission. Additionally, the suitability of model fuels for a standardized test
of the emissions in acceptance tests and for the mathematical modeling of the fuel NO-
formation is discussed.
In the literature, there are only a few results for the degree of conversion of fuelbound
nitrogen compounds. Also, there are no satisfactory analyzing techniques for the
determination of specific nitrogen compounds in liquid fuels. Therefore relevant material data
for nitrogenated hydrocarbons which are in the boiling range of liquid fuels have been
summarized. Additionally nitrogen compounds in liquid fuels were determined with a new
analyzing method developed by Severin and David.
Results will be presented which show the influence of the air ratio, the mass fraction of
nitrogen, the used basic fuel and chosen nitrogen compound on the conversion degree in
technical diffusion and premixed flames.

EMISSIONS OF N2O IN FLUIDIZED BED COMBUSTION OF COAL
M. Lin, S. Kulasekaran, T.M. Linjewile and P.K. Agarwal, Department of Chemical and Petroleum
Engineering, University of Wyoming (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

Fluidized bed combustion (FBC) has emerged as an environmentally attractive method for
burning coal because of low NOx emissions and optimum conditions for SOx removal with
limestone or dolomite. This is mainly due to the low combustion temperature employed
usually between 750 and 950°C. These lower combustion temperatures, however, enhance
formation of N2O ranging from 15 to 300 ppm in comparison with levels observed in pulverized
coal combustion boilers at 5 ppm. The higher N2O levels in fluidized bed combustion systems
raise some concern, as it is a potent greenhouse gas and stratospheric ozone layer depleting
agent. This study presents a new approach for examining the mechanisms of formation and
destruction of N2O in an incipiently fluidized bed. Combustion gases escaping from the surface
of the burning char particle were collected and analyzed for N2O, NOx , CO and CO2 by a
Fourier Transform Infrared Spectrometer (FTIR). Experiments were conducted using silica
sand particles ranging in size from 200 to 1000 µm at bed temperatures of 500 to 800°C.
Results for the coals examined (Wyoming and Colorado coals) show low N2O levels of 4-7 ppm
with NOx levels of 110-130 ppm. Comparison of experimental results with a single particle char
combustion model revealed the dominance of N2O destruction reactions for large char
particles.
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LASER INDUCED C2 FLUORESCENCE FROM LASER VAPORIZED SOOT IN LOW PRESSURE LAMINAR
PREMIXED ETHYNE/OXYGEN/ARGON FLAMES
O. Haessler, B. Jungfleisch, R. Suntz and H. Bockhorn, Institut fur Chemische Technik,
Universitaet Karlsruhe, 76128 Karlsruhe, Germany (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

For the validation of detailed chemical models for soot formation and their application to
turbulent flames it is necessary to develop a 2-D measuring technique to derive locally resolved
soot volume fractions, particle number densities and mean particle radii. In contrast to laminar
premixed flames, the extinction technique is not applicable in turbulent systems because of its
line-of-sight character. Two methods seem to be suitable to replace the extinction techniques:
• the laser induced incandescence (LII) and
• the laser induced fluorescence of C2 from laser vaporized soot (LIF(C2)LVS).
Whereas the first method has been investigated in detail the latter is scarcely mentioned in
the literature.
To investigate the LIF(C2)LVS technique systematically, the generation of C2 radicals and the
excitation of these radicals is separated by means of two consecutive laser pulses. A Nd-YAG
laser vaporizes a small part of the soot, which leads to the production of C2 radicals. A delayed
dye laser pulse is used to excite the C2 radicals at different transitions of the Swan band
system. The experiments were carried out for two laminar premixed ethyne/oxygen/argon
flames with different C/O ratios and known soot quantities. The fluorescence signal is
spectrally resolved and detected by an intensified CCD camera.
The energies of both pulses have been varied independently and the influence of these changes
on the detected signals has been investigated as a function of the height above the burner. For
constant vaporization (Nd-YAG with constant output) a linear dependence of the C2 fluorescence
with increasing dye-laser energy has been found. On varying the Nd-YAG laser output at
constant excitation energy the C2 signal increases with increasing laser energy until a plateau
is reached. This laser flux dependence is similar to that measured for the LII signal. A non-
sooting flame has also been checked by varying the output energy of the dye laser and
determining the energy dependence of the C2 signals. A different fluence dependence has been
found. This indicates that the C2 radicals in this case have another source than that one
detected in a sooting flame. When calibrating the C2 signals with extinction measurements to
obtain absolute soot volume fractions the results are for several measurements in good
agreement with the soot volume fractions obtained by LII. Differences are found in some cases
for certain laser fluxes and for smaller and larger soot particles (lower and higher heights
above the burner). To explain these differences further measurements are in progress.

ANALYSIS OF SOOT SHELL FORMATION IN DROPLET COMBUSTION
J.L. Castillo and A. Perea, Department Fisica, UNED, Apdo. 60141, Madrid 28080, Spain, and P.L.
Garcia-Ybarra, Department Combustibles Fosiles, CIEMAT, Madrid 28040, Spain (Work-in-Progress
Poster Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August
1998).

Droplet combustion usually involves the burning of liquid fuels in an oxidizing environment.
In the high activation energy limit, the vaporized fuel reacts in a flame-sheet where the
reaction heat is liberated. In this laminar diffusion flame structure, soot particles are
nucleated at the fuel rich side of the flame. Some experiments in droplet combustion show
that the soot may locate in a narrow shell-shaped region between the droplet and the flame.
The purpose of this work is to analyze the transport mechanisms which control the dynamics
of the soot particles and may lead to the formation of this soot shell accumulation layer.
Due to the presence of strong temperature gradients, thermophoresis drives the particles
down the temperature gradient and the particle velocity differs from the local gas velocity. For
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a large range of particle sizes, the thermophoretically induced velocity is quite insensitive to
particle size and morphology, allowing a soot transport analysis independent of particle size
and shape. Assuming that thermophoresis is the only soot particle diffusive transport, the
analysis shows that the soot velocity may vanish at a location between the droplet surface and
the flame value. However, this shell locus is dynamically unstable. Soot particles generated (or
present) in the near droplet region are pushed towards the droplet surface and the soot in the
near flame region moves towards the flame and away from the droplet. Then, thermophoresis
may lead to the existence of an unstable stagnation locus for the soot particles, but some other
phenomena are needed to produce a stable soot shell layer.
For the high temperatures prevailing near the flame, soot radiative heat transfer may be
important. The radiation of the individual soot particles generates an overall radial radiative
flux. Every particle receives the radiative fluxes produced for the remaining particles except
from those shadowed by the presence of the droplet. The incoming radiative flux induces a
photophoretic drift of the soot particles. The drift turns out to be in the direction of the
droplet. Therefore, a new locus of vanishing soot particle radial velocity may appear near the
flame. The photophoretically modified soot velocity and the conditions for the appearance of
this stable soot stagnation locus will be reported.

FULLERENE AND SOOT FORMATION IN LOW PRESSURE BENZENE/ACETYLENE/OXYGEN FLAMES
C. Janzen and P. Roth, Institut fur Verbrennung und Gasdynamik, Gerhard Mercator Universitat
Duisburg, 47048 Duisburg, Germany (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

The formation of fullerenes and soot particles was studied in laminar low pressure flames
burning benzene and acetylene as well as mixtures of both with oxygen. Positively charged
particles were measured and characterized due to their mass and charge applying a particle
mass spectrometer (PMS), which allows detection of particles in the mass range of 600 to
600,000 amu. The influence of the C/O ratio and gas composition on both, the mean particle
mass and probability density function of particle mass, was studied. Investigations of a 10%
C6H6 /90% C2H2 /O2 flame have shown that the mass growth of soot particles in mixed flames is
similar to the growth behavior in pure C2H2 /O2 flames. The addition of 10% benzene to
acetylene leads to 33 times more charged soot particles compared to the respective amount
found in a pure C2H2 /O2 flame for a specific flow coordinate while the influence on the mean
soot mass was found not to be that significant.
Additional studies in which the flow coordinate was chosen to be constant were performed
varying the C/O ratio as well as the benzene concentration. Results were compared to the data
obtained from measurements on a pure C2H2 /O2 flame. An increase in the benzene
concentration with the C/O ratio fixed at C/O=0.9 leads to an increase in the mean soot mass
with a coinciding decline in the relative concentration of charged soot particles which are only
found up to 50% benzene. For a pure benzene flame, the relative amount of charged fullerenes
compared to the amount found in the pure acetylene/oxygen flame increases by a factor of 480.
Simultaneous variations of the C/O ratio in the range 0.85≤C/O≤0.94 and the benzene
concentration influence the soot formation as well as the fullerene formation. In general, more
soot particles and fullerenes are formed with an increasing C/O ratio. Variations of the
benzene concentration lead to a decreasing soot mass for C/O<0.9 and an increasing soot mass
for C/O≥0.9. As expected, the fullerene mass is not affected by the varying fuel composition.
The relative amount of soot particles maximizes when 10% benzene is added to the fuel for all
C/O ratios. In contrast, the relative amount of fullerenes shows a constant incline for all
variations of the C/O ratio and the benzene concentration.
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PARTICLE FORMATION FROM SINGLE DROPLETS OF AQUEOUS SOLUTIONS OF LEAD NITRATE
A. D'Anna, M. Kurz, S.S. Merola and A. D'Alessio, Dipartimento di Ingegneria Chimica, Universita
di Napoli "Federico II," Napoli, Italy, and A. Borghese, Istituto Motori, C.N.R., Napoli, Italy (Work-
in-Progress Poster Presented at the 27th International Symposium on Combustion, Held in Boulder
CO, August 1998).

The thermal evolution of droplets of aqueous solution of lead nitrate has been studied in a
drop-tube furnace which simulates typical conditions for material synthesis through spray
pyrolysis and for the thermal destruction of liquid containing waste.
Aqueous droplets (100 µm) of lead nitrate with different salt concentrations have been injected
in the drop tube changing the temperature from ambient conditions up to 1200 K, thus
covering the processes of droplet evaporation, precursor precipitation within the droplet and
thermolysis of the precipitated particles.
Dimensions as well as physico-chemical properties of the droplets/particles have been obtained
"in situ" by ultraviolet-visible spectra of scattered light and compared with Scanning Electron
Microscopy (SEM) of the sampled material. A plasma generated in the air by a breakdown
induced by a Nd:YAG laser has been employed as source for the scattering diagnostics, thus
allowing an exceptionally high photon flux in the ultraviolet region where intense and species
specific interactions with metal species take place.
Three distinct optical regions characterize aqueous solutions of lead nitrate. A first one,
characterized by an extremely strong absorption band around 220 nm, called the "reflective"
band, takes into account surface properties of the droplets/particles, a second one with a broad
but less intense absorption around 300 nm, called the "refractive" band, gives insights on the
inner properties of the droplets and a third, "transparent" band around 400 nm where no
significant light interactions occur.
The spray drying process is followed by measuring the light scattered by the droplets in the
refractive region. The decrease of the scattering intensity at 300 nm at increasing
temperatures is related to the increase of the absorptivity of the aqueous solution due to the
selective water evaporation and hence, to the reduction of the droplet size. As the drying
process progresses, surface concentration reaches the saturation value and solute is deposited
as a solid phase forming a surface crust which grows steadily. At this point in the process of
droplet drying, information was retrieved from the signal intensity in the reflective band since
it takes into account the light reflected by the particle interface. Two spectral scattering
behaviors are detected at temperatures above the salt precipitation within the droplet. On the
basis of Mie calculations and SEM measurements these behaviors are attributed to lead nitrate
particles with typical diameters of the residual droplets (about 50 µm) and to micrometric
sized lead oxide particles.
The effect of salt concentration on the drying process and the thermolysis of lead nitrate to
oxide is investigated by changing the salt concentration from very diluted conditions up to
almost saturation.

PHASE DOPPLER ANEMOMETRY DETERMINED SODIUM AND POTASSIUM BICARBONATE PARTICLE
PROPERTIES IN COUNTERFLOW DIFFUSION FLAMES
J.W. Fleming, M.D. Reed, E.J.P. Zegers, B.A. Williams and R.S. Sheinson, Combustion Dynamics
Section, Navy Technology Center for Safety and Survivability, Naval Research Laboratory,
Washington, DC 20375 (Work-in-Progress Poster Presented at the 27th International Symposium
on Combustion, Held in Boulder CO, August 1998).

The search for more effective halon replacement agents and alternative fire suppression
technologies includes investigations into the suppression properties of aerosols. We recently
reported on our investigations of the extinction properties of bicarbonate powders in
counterflowing diffusion propane/air flames. This poster extends those studies, examining the
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size and velocity distributions of the particles actually delivered to the flames, as well as a
determination of the fate of the particles at various strain rates. Powders examined in the
current study include potassium bicarbonate (KHCO3 ) and sodium bicarbonate (NaHCO3)
sieved into various size groupings from 38 to 75 µm. A phase Doppler anemometry (PDA)
system was used to measure particle velocity, size, and concentration. Particles with sizes that
lead to greater residence times near the intersection of the counterflowing fields show a higher
suppression effectiveness.

PRODUCTION OF VIBRATIONALLY EXCITED SiO IN THE REACTION OF SiH4 WITH O(1D)
A. Takahara, A. Tezaki and H. Matsui, University of Tokyo, Japan (Work-in-Progress Poster
Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August 1998).

Compared to the corresponding hydrocarbons, silanes have marked differences in behavior in
terms of individual elementary reactions as well as combustion properties. Production of SiO
in the title reaction is a typical example of such a contrast. Also, chemistry and molecular
physics of SiO vs. CO are of interest.
Experimentally, mixtures of N2O and SiH4 , diluted in He, were irradiated by 193 nm ArF
laser pulses in a quasi-static cell, where N2O was photolyzed to generate the singlet oxygen
atom. Progressions of vibrational bands of the SiO (A1Π-X1Σ+) transition were monitored by a
laser induced fluorescence technique in the wavelength range 230-280 nm. A frequency
doubled, YAG pumped conventional OPO (optical parametric oscillator) laser was used for a
consecutive sweep over the wide wavelength range, so that the energy distribution of SiO(v) is
precisely determined. Temporal profiles of each band exhibit fast rise and relatively slow
secondary decay. The former corresponds to the reaction rate of SiH4+O(1D) being reported in
our previous paper, and the latter is primarily due to vibrational relaxation of SiO. The
spectral intensity of the vibrational bands up to v=7 was translated into the vibrational
population distribution using known Franck-Condon factors and wavelength dependent
sensitivity of the detection system.
The nascent vibrational distribution of SiO was well approximated by a Boltzmann
distribution with a vibrational temperature, Tv , of 5200(±660) K. That means 5.7% of the total
exothermicity of 574 kJ/mol appears in the SiO vibrational mode, when a pair of H2 are
assumed as the counterpart of the products. Reported ab initio calculations indicate that the
most probable path for the SiO formation is a two-step unimolecular decomposition of
internally activated silanol via an HSiOH intermediate. A statistical calculation for the
product energy distribution with barrier height corrections yielded Tv=5700 K, which is in
reasonable agreement with observation. Other pathways, such as one with a H2SiO
intermediate and one that yields H atoms, cannot account for the SiO vibrational excitation
due to a higher barrier or lower exothermicity of the products.
Rate constants for the SiO vibrational relaxation at each state (v≤6) were also evaluated for
different collision partners (M). Neighboring transitions (∆v=1) were assumed to be dominant
in the analysis. When M=N2O, k1→0=2.4x10−12 cm3 molecule−1s−1, gradually increasing with v.
This is three orders larger than that for He and one order larger than that for SiH4 . Probably
the high efficiency of N2O is due to near-resonant V-V energy transfer processes.

IMPACT OF QUARTZ PROBES ON SPECIES PROFILES IN FUEL RICH HYDROCARBON FLAMES
H.-H. Carstensen, L.I. Yeh and A.M. Dean, Exxon Research and Engineering, Corporate Research,
Annandale, NJ 08801 (Work-in-Progress Poster Presented at the 27th International Symposium on
Combustion, Held in Boulder CO, August 1998).

Molecular beam mass spectrometry based investigations of low pressure premixed flames have
proven to yield valuable information about the chemistry of combustion. However, it is well
known that the sampling problems of these systems lead to some extent to perturbations of
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the studied flame. In an early study Biordi et al. investigated the degree of perturbation of a
lean methane flame by several types of sampling probes. By comparing concentration profiles
of stable species obtained with different cone types they concluded that a hybrid type
sampling cone with tip angle of 40 degrees performs best. Subsequently numerous group used
this type of quartz probes.
In preparation of detailed studies of fuel rich hydrocarbon flames we are again interested in
the impact of hybrid type quartz cones on the flame structure. Fuel rich flames seem to have a
larger tendency of being perturbed by probes and therefore the conclusions of Biordi et al.
might not be valid for these flames. Further predictions of species profiles from modeling work
are becoming better and better, leading to more stringent requirements for experimental data.
With our MBMS flame chamber apparatus we measure concentration profiles of selected
species in three fuel rich flames using three different hybrid type quartz cones: the ‘standard'
40 degrees cone, one with a tip angle of 25 degrees and the third one with a tip angle of about
10 degrees. The flames under investigation have the following properties:
1) 18.1% CH4 , 28.8% O2 , 51.2% Ar (Φ=1.26) at 30 torr with a cold gas velocity of 47.7 cm/s,
2) 16.5% C2H4 , 28.3% O2 , 53.3% Ar (Φ=1.75) at 20 torr with a cold gas velocity of 72.5 cm/s,
3) 8.6% c-C6H12, 45.8% O2 , 44.3% Ar (Φ=1.70) at 40 torr with a cold gas velocity of 54.4 cm/s.
All flames contain in addition a small amount of Neon used as reference gas. The conditions
were chosen to create flames with different properties. The ethylene flame shows a significant
standoff from the burner surface (about 6 mm) and has an extended luminous zone. In
contrast, the cyclohexane flame is very closely attached to the burner surface and its bright
reaction zone is very narrow. The properties of the methane flame are in-between the other
flames.
Assuming that species profiles obtained with the narrow tip are least affected by perturbation,
comparison with profiles measured with the other cones indicates their impacts on the flame
structure. We mapped profiles of O2 , CO, CO2 , H2O and C2H2 for this comparison.  In the case
of radical profiles subsequent reactions in the molecular beam region are more probable to
occur in the 10-degree tip due to the lower pumping speed. Differences in signal intensities
give an idea of the importance of these secondary reactions during the probing process on
experimental results. This will be shown by means of H, OH and CH3 profiles.

LASER IONIZATION-MASS SPECTROMETRY AS AN ON-LINE SENSOR FOR AROMATICS IN REAL LIFE
COMBUSTION PROCESSES: APPLICATION FOR ON-LINE ANALYSIS OF CIGARETTE SMOKE,
COMBUSTION FLUE GASES AND PYROLYSIS OFF-GASES
R. Zimmermann, Institut fur Okologische Chemie, GSF-Forschungszentrum fur Umwelt und
Gesundheit, D-85758 Neuherberg (Oberschleissheim), Germany, and H.J. Heger, Lehrstuhl fur
Okologische Chemie and Umweltanalytik, Technische Universitat Munchen, D-85748 Freising,
Germany (Work-in-Progress Poster Presented at the 27th International Symposium on Combustion,
Held in Boulder CO, August 1998).

Resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS)
represents a high selective as well as sensitive analytical technique, well suited for species
selective real-time, on-line monitoring of trace gases. A newly designed, mobile REMPI-TOFMS
instrument, optimized for field applications has been developed.
The homebuilt, very compact linear time-of-flight mass spectrometer is combined with
compact excimer laser (KrF, 248 nm) or a small Nd:YAG laser (fourth harmonic frequency, 266
nm). The data acquisition system allows registration of full mass spectra with a repetition rate
of up to 10 Hz. A special effusive molecular beam inlet system was developed for direct inlet of
flue gases from, for example, waste incinerators (without memory effects for compounds up to
300 amu). All components are mounted in a movable rack. The achievable on-line detection
sensitivity, for example, for naphthalene is about 50 pptv under field measurement conditions
(248 nm).
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Applications concerning on-line monitoring of combustion byproducts and pyrolysis off-gases
are presented. This includes on-line analysis of polycyclic aromatic hydrocarbons (PAH) in the
flue gas of a waste incineration plant, headspace analysis of wood gasification products and
crude oil (fuel analysis) as well as highly time resolved (single puff resolution) on-line analysis
of cigarette smoke (smoking machine and mouthspace analysis).
The application of the on-line REMPI-TOFMS monitor for continuous analysis of dioxin (PCDD/F)
indicators in the flue gas of, for example, municipal waste incinerators is explained.

FREQUENCY MODULATION SPECTROSCOPY BEHIND SHOCK WAVES
J. Deppe and G. Friedrichs, Universitat Gottingen, Tammannstr. 6, 37077 Gottingen, Germany
(Work-in-Progress Poster Presented at the 27th International Symposium on Combustion, Held in
Boulder CO, August 1998).

For the detection of radicals at high temperatures in the gas phase the difference absorption
method is frequently used. In single shot experiments the detection limit of this method is
approximately 0.1 to 0.2% absorption. Many kinetic experiments require as low a concentration
as possible to reduce the influence of secondary reactions. That is the reason why the detection
limit is soon approached. Furthermore no suitable detection method seems to be available for
such radicals as CH2 in shock tube measurements. In recent years, several variants of the laser
frequency modulated (FM) technique have been developed, which have been successfully used
for the detection of weak spectral features. Now, for the first time FM spectroscopy is used for
detection of radicals behind shock waves with a higher sensitivity. As a first result, the
detection limit of NH2 radicals (PQ1,N(7) line of the A2A1-X2B1 (090-000) transition at 597.375
nm) can be improved by one-and-a-half orders of magnitude. Similar improvements are
expected for singlet CH2 detection.
In order to demonstrate the capabilities of this new detection system in combination with a
shock tube apparatus several experiments have been performed. We report measurements of
• the unimolecular decomposition of NH2 in an extended temperature range
• the reaction of NH2+H2

• the reaction of NH2+NO, overall rate constant and branching ratios which are important in
the DeNOx process.

Shock tube experiments involving the singlet CH2 radical, which is of special interest in
hydrocarbon combustion, are in progress.

SENSITIVE DETECTION OF NH2 IN SHOCK TUBE KINETICS EXPERIMENTS USING FREQUENCY
MODULATION SPECTROSCOPY
M. Votsmeier, S. Song, R.K. Hanson and C.T. Bowman, High Temperature Gasdynamics
Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
(Work-in-Progress Poster Presented at the 27th International Symposium on Combustion, Held in
Boulder CO, August 1998).

The development of more sensitive diagnostics for shock tube kinetics experiments enables
measurements at lower initial concentrations and hence, with an increased sensitivity to
individual elementary reactions. Although the introduction of laser-based techniques has
allowed considerable progress in this direction, classical laser absorption measurements are
still subject to the noise caused by the passage of the laser beam through the shock tube, such
as scattering and beam steering. Frequency modulation (FM) detection, as a different
absorption scheme, is insensitive to these effects and thus allows a considerable improvement
in detection sensitivity; so far a factor of 20 has been achieved in our laboratory. We will
present experimental details such as reproducible calibration for absolute concentration
measurements and the influence of collisional broadening on the frequency modulation signal.
We have applied the FM detection technique to study the branching ratio of the reactions:



18

NH2+NO→H2O+N2 (1a)
NH2+NO→HN2+OH (1b)

These two reactions are the two most influential reactions in determining the efficiency of the
non-catalytic removal of NO from exhaust gases by addition of NH3 . While there is good
agreement in the literature data for the overall rate coefficient of reaction 1, measurements of
the branching ratio α=k1b /k1a+k1b show considerable scatter at temperatures above 1000 K. We
demonstrate that application of the sensitive frequency modulation technique allows a precise
measurement of the branching ratio α, with virtually no interference from secondary reactions
and independent of the overall rate of reaction 1. The branching ratio is found to increase from
0.4 at 1350 K to 0.6 at 1750 K. This result is in good agreement with a recent modeling study
by Glarborg et al.

PLIF MEASUREMENTS IN A MODEL OIL-FIRED FURNACE WITH HIGHLY PREHEATED, OXYGEN-
DEPLETED AIR
N. Shimo, Petroleum Energy Center, 1-4-10 Ohnodai, Midori-ku, Chiba 267-0056, Japan, K. Morita
and Y. Zhu, Tokyo Instruments Inc., 6-18-14 Nishikasai, Edogawa-ku, Tokyo 134-0088, Japan, and
M.G. Allen, Physical Sciences Inc., 20 New England Business Center, Andover, MA 01810 (Work-in-
Progress Poster Presented at the 27th International Symposium on Combustion, Held in Boulder
CO, August 1998).

Combustion with highly preheated (T>800 K), oxygen-depleted air has been investigated in
both fundamental studies and in practical industrial combustion systems. In industrial
systems, regenerative burners are used to produce the inlet air conditions. In these systems,
reduced NOx formation and improvements in the overall furnace combustion efficiency have
been noted. More fundamental studies used propane (derived from LPG) and methane gas have
recently examined the role of reduced oxygen on the overall flame structure and detailed
temperature profiles. In these studies, it was observed that the overall flame luminosity
became predominantly green with increasing temperature and decreasing oxygen due to the
formation of electronically-excited C2 radicals emitting in the Swan band system near 516 nm.
Measurements of both CH and C2 emission showed that the ratio of C2 /CH emission increased
with air preheat temperature.
This poster will present results from recent studies on oil spray combustion in a model
regenerative furnace. Such practical fuels have not been extensively studied in detail
previously and are of practical interest. Further, the comparison between the simple gaseous
fuels studied earlier and the more complex liquid fuels here is expected to help clarify the role
of spray processes, heavier hydrocarbon chemistry, and soot formation in regenerative
combustion conditions. Measurements of the C2 /CH emission ratio as a function of inlet air
conditions show differences compared to the gaseous fuels studies.
Because the emission arises from electronically excited states of the combustion radicals
whose chemical production and consumption pathways are poorly understood, we have
employed Planar Laser Induced Fluorescence (PLIF) to measure the ground states of the
radicals. Instantaneous and time-averaged two-dimensional distributions of these species are
expected to more readily clarify their role in the overall flame structure and NOx emission as a
function of regenerative air conditions. In addition to CH and C2 measurements, images of the
NO and OH distribution will be reported, adding to the understanding of the overall flame
structure and the spatial distribution of NO in the furnace. Temperature profiles and exhaust
gas analyses will also be presented. Finally, practical issues associated with industrial, oil-fired
combustion with preheated, oxygen-depleted air will be described.
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SPECTROSCOPIC AND TIME RESOLVED INVESTIGATION OF PICOSECOND LASER INDUCED
FLUORESCENCE FROM PAH AT ELEVATED TEMPERATURES
F. Ossler, T. Metz and M. Alden, Department of Combustion Physics, Lund Institute of Technology,
P.O. Box 118, S-221 00 Lund (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

Polyaromatic hydrocarbons (PAH) have been a subject of study for many years and several
groups have analyzed the presence of PAH in flames. In situ measurements are generally
performed by monitoring the laser induced fluorescence, often spectrally resolved. Studies
regarding the spectral behavior of a number of PAH (for example, pyrene and fluoranthene)
with respect to temperature in conditions relevant for combustion, have been performed by
other groups. For example it has been found that the dual spectral fluorescence from pyrene
can be used as a thermometer in combustion environment. However, the spectral profiles of
aromatic substances in gas phase are in general almost structureless and broadband and may
change with temperature, making it difficult to spectrally select the different species.
Measurements of the temporal evolution of the fluorescence emission would in principle
increase the possibility to discriminate between different PAH. Decay measurements have been
performed by other groups, however, they were conducted at relatively low temperatures
compared to real flame conditions.
We have during the last year done picosecond laser induced, spectrally and temporally
resolved fluorescence-emission measurements on PAH at atmospheric pressure conditions at
temperatures between 150 and 900°C in order to study their temperature and oxygen-
quenching behavior. The 266 nm wavelength radiation from a picosecond Nd:YAG was focused
with a 1000 mm lens into a flow cell made of quartz. The cell was placed inside an oven and
both had optical access for the incoming and outgoing laser beams as well as for the
fluorescence emission to be measured at 90°. By an optical arrangement consisting of UV-
achromatic lenses, mirrors and filters, the fluorescence emission was focused onto a dual
detection system, which included a spectrograph/OMA for the spectral analysis and a
photomultiplier tube and a streak camera for the temporal analysis. Fluorescence quenching
by oxygen was controlled by mixing the buffer gas (argon or nitrogen) with known amounts of
air.
Results on fluorene and naphthalene show that the lifetimes decrease continuously with
increasing temperature and that the spectral profiles change, broadening and/or red shifts are
observed. Preliminary results indicate that argon and nitrogen may not act in exactly the
same way on the decay of the fluorescence emission. Argon was in some cases used instead of
nitrogen, for example, for fluorene, which showed relatively low stability to temperature. It
was possible to discriminate fluorene from naphthalene in mixtures of the two by observing
the decay of the fluorescence emission.
These results and results from measurements on other PAH are presented, both regarding high
temperature cell and flame seeding experiments.

PLANAR LASER INDUCED FLUORESCENCE MEASUREMENTS IN HIGH PRESSURE SPRAY FLAMES
J.H. Frank, M.F. Miller and M.G. Allen, Physical Sciences Inc., 20 New England Business Center,
Andover, MA 01810 (Work-in-Progress Poster Presented at the 27th International Symposium on
Combustion, Held in Boulder CO, August 1998).

The extension of planar laser induced fluorescence (PLIF) imaging techniques to elevated
pressures is necessary for research and development of advanced gas turbine combustors. We
are currently developing a PLIF system for use in high-pressure spray flame environments that
simulate gas turbine combustion conditions. In a previous study of high-pressure spray
flames, we observed that PLIF images of OH were significantly corrupted by broadband laser
induced interference from hydrocarbon intermediates. The concentration of these
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hydrocarbon intermediates increased rapidly with pressure, resulting in substantially more
interference than occurred at atmospheric pressure. In that work, the burner had poor fuel/air
mixing and no preheated air, which tended to increase the levels of hydrocarbon intermediates
and soot. Recently, we have constructed an optically-accessible model gas turbine combustor
that is operated at 20 atm pressure with inlet air at 500 K and a production liquid fuel
injector. This configuration more accurately simulates the conditions of an actual combustor,
and it reduces the concentrations of species that corrupt the PLIF signal. In addition, we have
implemented a detection scheme that allows the interference to be recorded separately and
subtracted from the PLIF signal on a shot-by-shot basis. The detection system includes a
multiple-wavelength viewer, which permits simultaneous recording of the interference and
PLIF images on different regions of a 1024x256 pixel CCD camera. The LIF is excited by the
frequency-doubled output of a Nd:YAG-pumped dye laser. Examples of instantaneous PLIF
measurements in our model gas turbine combustor will be presented. These results
demonstrate a novel capability for using PLIF imaging diagnostics to study combustion
phenomena in a practical combustor.

STRUCTURE OF A HYDROGEN/OXYGEN FLAME DOPED WITH TRIMETHYL PHOSPHATE
O. Korobeinichev, V. Shvartsberg and A. Chernov, Institute of Chemical Kinetics and Combustion,
Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia (Work-in-Progress
Poster Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August
1998).

Interest in studying the destruction chemistry of organophosphorus compounds (OPC) in
flames is simulated by two reasons. First is the problem of chemical warfare agent disposal by
incineration, which has appeared in recent years. The second is associated with some OPC
ability to affect the combustion process. The goal of the present research is to provide a more
profound understanding of trimethyl phosphate (TMP) destruction chemistry in flames and
TMP effects on the H2 oxidation mechanism and to permit subsequent flame structure
modeling. As a result, it is necessary to obtain quantitative concentration data on all the flame
species (including atoms and free radicals) as a function of the distance from the burner
surface. Molecular beam mass spectrometry with electron-impact ionization at 12.9-21 eV and
an electron energy spread of ±0.25 eV was used to study the structure of a premixed H2 /O2 /Ar
(0.26/0.13/0.61) flame without additives and with 0.2% additive of trimethyl phosphate (TMP),
stabilized on a flat flame burner at 47 torr. To calibrate the phosphorus-containing species in
the postflame zone, HOPO2 , HOPO, PO2  and PO mass peak intensities were measured in
stoichiometric and lean flames at different TMP concentrations in the flame. Calibration
coefficients for HOPO2 , HOPO, PO2  and PO were calculated by solving element balance
equations for phosphorus in the postflame zones of different flames. For the first time,
orthophosphoric acid was found to be an intermediate product of TMP destruction in flame.
Stable components (H2 , O2 , H2O), atoms and radicals (H,O,OH) were measured as well as
organophosphorus compounds - TMP and its destruction intermediates: dimethyl phosphate,
dimethyl phosphite, methyl phosphate and methyl phosphite. The calibration coefficients of
H, O and OH were estimated by the method based on assumption of partial equilibrium
existing in the system of the most "rapid" reactions. Using the results of the intensity profiles
measured for all the flame species and the calibration coefficients, the mole fraction profiles of
all species, including those of atoms and free radicals were found. The calibration coefficients
for some species were determined experimentally, and were estimated for the others. The
mechanism of TMP destruction in a H2 /O2 /Ar flame, suggested before, is refined.
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SHOCK TUBE STUDY OF THE HIGH TEMPERATURE PYROLYSIS OF ACETALDEHYDE AND OXIRANE
A. Dib, J. DeFelice and J.H. Kiefer, Chemical Engineering Department, University of Illinois at
Chicago, Chicago IL (Work-in-Progress Poster Presented at the 27th International Symposium on
Combustion, Held in Boulder CO, August 1998).

Acetaldehyde pyrolysis has been studied behind incident shock waves using the laser-Schlieren
(LS) technique over the temperature range 1563 to 2020 K. Three groups of experiments were
performed in 2% and 4% acetaldehyde-krypton gas mixtures in the three post-shock pressure
ranges of 152-173 torr, 174-219 torr, and 510-552 torr. Pressure dependent rate constants for
the initial carbon-carbon bond fission have been derived by modeling the LS data from 46
experiments with an elementary reaction mechanism containing 36 reactions. The fall-off
behavior of this bond fission reaction has been successfully modeled with a hindered-rotor
Gorin RRKM calculation using a temperature independent <∆E>down value of 500 cm−1. This
RRKM analysis places the unimolecular dissociation of acetaldehyde in the fall-off region close
to the low pressure limit.
Branching ratios for hydrogen atom and methyl radical abstraction reactions involving
acetaldehyde have been investigated at these high temperatures, and it has been concluded
that values of the branching ratios which favor formation of vinoxy radical (CH2CHO) over
acetyl radical (CH3CO)

 CH3+CH3CHO → CH2CHO+CH4

→ CH3CO+CH4

     H+CH3CHO → CH2CHO+H2

→ CH3CO+H2

are consistent with the LS density gradient data. The fate of CH2CHO in the system has been
newly investigated using the transition state frequencies and geometries calculated by Osborn
et al. With these, a two-channel master equation calculation has been performed and rate
constants for the dissociation of CH2CHO into ketene, as well as isomerization into CH3CO,
have been calculated.
Four additional reactions were added to the acetaldehyde mechanism to successfully model
the high temperature pyrolysis of oxirane in krypton. Rate constants for the isomerization of
oxirane into acetaldehyde and chemically activated dissociation into methyl and formyl
radicals have been derived from the modeling of the LS data and fit with a two channel RRKM
calculation. The two channel RRKM calculation predicts the observed favoring of radical
formation at low pressures, and the favoring of isomerization to acetaldehyde at high
pressures.
A major result from this work is the derivation of incubation times in oxirane pyrolysis.
Experiments have been performed which show the sequential processes of vibrational
relaxation and dissociation in oxirane.

GAS PHASE RADICAL-RADICAL KINETICS OF THE RADICALS CH2F, CHF2 , CH3 AND C2H5 

T. Beiderhase and K. Hoyermann, Institut fur Physikalische Chemie, Universitat Goettingen, and
W. Hack, Max-Planck-Institut fur Stromungsforschung, Goettingen, Germany (Work-in-Progress
Poster Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August
1998).

For the description and the prediction of the chemistry of halogenated organic compounds under
incomplete combustion like pyrolysis or under poor operating conditions (leading to the formation
of undesirable compounds, PICs) the data on elementary reactions of fluorinated radicals are
essential. Whereas the self-reactions of CH3 and CF3 radicals lead to the combination products
C2H6 and C2F6 , respectively, the CH2F and CHF2 radicals can, moreover, show elimination and
disproportionation besides. Therefore, the reactions of CH2F and CHF2 radicals are of
theoretical and practical interest.
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We want to report on five radical-radical reactions of CH2F, CHF2 , CH3 and C2H5 radicals with
relevance to pyrolysis where the priority is set on the measurements of the rate coefficients
complemented with primary product detection for a comparison with existing data from final
product analysis.
The method used is the discharge-fast-flow-technique, molecular beam sampling, and mass
spectrometry applying laser induced multiphoton ionization (especially for radicals) and
electron impact ionization.
The mechanism and rate of the reactions of hydrocarbon and fluorinated hydrocarbon radicals
in the gas phase have been studied at low pressure (0.5≤p/mbar≤2) and low temperature (243≤
T/K≤373). The combination reactions of CH2F and CHF2 at low pressure lead to HF
elimination and stabilization, respectively, in the major reaction routes

CH2F+CH2F → C2H3F+HF (1b)
k1=7.0(±0.8)x1012(T/298)(−3.9±1.0)cm3/mol⋅s, (253≤T/K≤333)

CHF2+CHF2 →C2H2F4 (2a)
k2=2.6(±0.6)x1012(T/298)(−1.9±0.3)cm3/mol⋅s (253≤T/K≤333)

The cross combination of CH2F and CHF2 radicals proceeds via HF elimination from the
chemically activated CH2FCHF2 product

CH2F+CHF2 → C2H2F2+HF (3b,c,d)
k3(298K)=4.5(±2.3)x1012cm3/mol⋅s

The mechanisms and rates of the reactions of the CH2F radicals with the CH3 and C2H5

radicals were found as
CH2F+CH3 → C2H4+HF (4b)

k4(298K)=3(±1.5)x1013cm3/mol⋅s
CH2F+C2H5 →C3H6+HF (5b)

k5(298K)=1.3(±0.3)x1013 cm3/mol⋅s
The general mechanism of the hydrocarbon/fluorinated hydrocarbon radical-radical
interaction is discussed in the terms governing chemical activation processes
(association/redissociation/stabilization/decomposition, elimination).

OVERALL RATE AND PRODUCT FORMATION STUDIES OF THE REACTION CH3+OH AT 298, 377 AND
473 K
A. Bencsura, T. Berces and S. Dobe, Chemical Research Centre, Hungarian Academy of Science,
Pusztaszeri ut 59-67, H-1025 Budapest, Hungary, R. Deters and H.G. Wagner, Max-Planck-Institut
fur Stromungsforschung, Bunsenstrasse 10, D-37073 Goettingen, Germany, and F. Temps, Institut
fur Physikalische Chemie, Universitat Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany (Work-in-
Progress Poster Presented at the 27th International Symposium on Combustion, Held in Boulder
CO, August 1998).

The rates of the reactions
       CH3+OH → products  (1)

and
       CH3+OH → 1CH2+H2O  (1a)

are important in hydrocarbon combustion systems in determining the further oxidation
pathways of CH3 and thereby the rate of heat release. Both the overall reaction (1) and the
1CH2 forming reaction channel (1a) have attracted significant attention and not less
controversy in the literature in the past few years. In a series of recent studies we have applied
sensitive and selective direct experimental methods to establish the kinetics of the reactions at
298 K. The present investigations extend the temperature range above room temperature.
Two complementary techniques were used in the experiments. In the low pressure regime it
was the fast flow method coupled with laser magnetic resonance detection (DF/LMR) while at
higher pressures the laser flash photolysis technique with UV-transient absorption detection
(LFP/TAS) was applied. The OH and CH3 radicals were monitored simultaneously both in the
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fast flow and the laser flash photolysis experiments. Reaction channel (1a) was determined
with the FD/LMR technique by measuring the 1CH2 radical in its triplet form, 3CH2 , that was
formed via the fast intersystem crossing process in the system. The rate coefficients k1 and k1a

were obtained from computer simulations.
The most important findings are the following:
(i) Reaction (1) is characterized by a weak pressure and temperature dependence;
(ii) 1CH2 is the most important reaction product at a few mbar of pressure in the temperature

range of 298-473 K;
(iii) The high 1CH2 yields measured indicate that this reaction channel will be important

under flame relevant conditions as well, leading to chain propagation in contrast to the
chain terminating combination to CH3OH.

A THEORETICAL STUDY OF THE C2H2 REACTION WITH C2H AND C3H3 RADICALS
L.V. Moskaleva, L.K. Madden and M.C. Lin, Department of Chemistry, Emory University, Atlanta,
GA 30322 (Work-in-Progress Poster Presented at the 27th International Symposium on
Combustion, Held in Boulder CO, August 1998).

The reactions of acetylene with unsaturated hydrocarbon radicals such as ethynyl, C2H, and
propargyl, C3H3 , are pertinent to the formation of soot in its incipient stages. In the present
study we focus on the fragmentation and formation of n-C4H3 and c-C5H5 radicals from the
reactions of C2H2 with C2H and C3H3 radicals using different levels of ab initio molecular
orbital theory to map the potential energy profiles of the reactions.
The C2H+C2H2 reaction initially produces a vibrationally excited n-C4H3 radical which can
undergo further fragmentation to give rise to diacetylene, C4H2 , and a hydrogen atom:

 a          b
    C2H+C2H2  ↔  n-C4H3

†  →  C4H2+H
-a

Both RCCSD(T)//B3LYP/6-31g(d,p) and G2M(rcc,MP2) calculations yielded a small 2(±1)kcal/mole
activation energy for the addition step (a) and a large reverse H-atom addition barrier,
E−b=11(±2) kcal/mole. The n-C4H3 radical was found to be stable, with respect to C4H2+H, by
29(±2) kcal/mole based on the above two methods and a multireference perturbation theory
CASPT2(7,7)/6-31g(d,p).
The C3H3+C2H2 reaction, which involves a sequence of transformations from open-chain to
cyclic C5H5 isomers, was found to take place with 11.6 kcal/mole addition barrier at the
CASPT2(6,5)/6-31G(d,p)//B3LYP/6-31g(d,p) level of theory. The most stable c-C5H5 ,
cyclopentadienyl, was calculated to be 77.6 kcal/mole below the C3H3+C2H2 reactants. Other
C5H5 isomers, trans-C5H5 , cis-C5H5 , and isocyclo-C5H5 , were found to lie at 20.4, 18.4 and 48.5
kcal/mole below the reactants. The transition states connecting those isomers have been found
and characterized at the same level of theory.
These ab initio data will be utilized for the rate constant calculations employing multichannel
RRKM theory.

MEASUREMENT OF THE THIRD BODY EFFICIENCY OF WATER FOR THE H+O2+M→HO2+H2O
REACTION AT 35 atm AND 1200 K
R.W. Bates, R.K. Hanson, C.T. Bowman and D.M. Golden, High Temperature Gasdynamics
Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
(Work-in-Progress Poster Presented at the 27th International Symposium on Combustion, Held in
Boulder CO, August 1998).

Measurements of the rate of the H+O2+M→HO2+M reaction for M=H2O at temperatures
greater than 900 K exhibit a wide variation in the third-body efficiency of water. Shock tube
and flame studies of previous researchers report third-body efficiencies for H2O compared to
argon from 4 to 44. Given the importance of this reaction in many combustion phenomena,
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clarification of the third-body efficiency at high temperatures is needed. In addition, existing
measurements have been made only near atmospheric pressure, and extension of the data to
higher pressures is desirable.
In the work reported here, we extend the technique of Bromly et al. (1995), which is based on
observations by Ashmore and Tyler (1962) that a quasi-steady state for NO2 is established in
H2 /O2 mixtures containing small amounts of NO for sufficiently high [NO]/[O2] ratios. Using a
shock tube and Ar+ laser absorption of NO2 at 472.7 nm, the third body efficiency of water
relative to argon for H+O2+M→HO2+M at temperatures greater than 1000 K can be
determined. Through sensitivity analysis, experimental conditions were chosen so that NO2

plateau levels generated are sensitive only to the known H+NO2→NO+OH reaction and to
H+O2+M→HO2+M (M=Ar,H2O). Experiments were conducted behind reflected shock waves
in a 5 cm internal diameter, stainless steel shock tube using H2 /O2 /NO/H2O/Ar mixtures.
Measured NO2 absorption profiles were quantitatively converted into NO2 mole fraction
profiles using measured absorption coefficients. The third-body efficiency of water, relative to
argon, was determined by comparison of kinetic modeling fits of the measured NO2 plateaus,
using the rate of H+O2+M→HO2+M as an adjustable parameter, in experiments with and
without water addition. Test conditions are centered about 1200 K and 35 atm. Evaluation of
the data suggests that the third-body efficiency of water relative to argon, at this temperature
and pressure, is consistent with a value of 17.8, found in GRI-Mech v2.11. This result also is in
agreement with the work of Ashman and Haynes (1998) from 750-900 K and atmospheric
pressure reported at this Symposium.

RATE CONSTANTS FOR HO2 ADDITION TO PRIMARY, SECONDARY AND TERTIARY CARBON DOUBLE
BOND: ETHYLENE, PROPENE AND ISOBUTENE BASE ON AB INITIO CALCULATIONS
C.-J. Chen and J.W. Bozzelli, Department of Chemical Engineering, Chemistry and Environmental
Science, New Jersey Institute of Technology, Newark, NJ 07102 (Work-in-Progress Poster
Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August 1998).

The kinetics of HO2 radical addition to the primary, secondary and tertiary carbon double
bond of ethylene, propene and isobutene has been studied using ab initio calculations and
calculated values are compared with available experimental data. Thermodynamic properties
of reactants, adducts and transition state species are determined by ab initio calculations
using MP2/6-31G(d), CBS-4 and CBS-q with MP2/6-31G(d) and B3LYP/6-31G(d) optimized
geometries. Density function calculations B3LYP/6-31G(d) and B3LYP/6-311+G(3df,2p) are also
studied. Kinetic rate parameters for HO2 radical addition to carbon double bonds of olefins are
determined from transition state theory. Experimental data and calculated rate constants for
addition reactions show similar trends; HO2 radical addition to tertiary carbon double bond
(HO2 addition at CD/C2 carbon atom of isobutene) has a lower activation energy than addition
to primary or secondary carbon double bond. Comparison of calculated rate constants at
CBS-q//MP2/6-31G(d) level with experimental data show good agreement. Transition state
structures show a near-planar-ethylene configuration with HO2 addition perpendicular to the
plane with a C-O bond length ranging from 1.9365 A(TS of HO2 addition ethylene) to 1.9743
A(TS of HO2 addition at CD/C2 carbon atom of isobutene) and a ∠CCO ranging from 90.1° (TS

of HO2 addition at CD/H2 carbon atom of isobutene) to 104.07° (TS of HO2 addition at CD/H2
carbon atom of propene) using MP2/6-31G(d) geometry. Energies of activation for HO2 addition
to the primary, secondary and tertiary carbon double bond are 10.1, 8.56 and 6.78 kcal/mole,
respectively (HO2 addition to ethylene is 12.79 kcal/mole) at CBS-q//MP2/6-31G(d) level. Pre-
exponential A-factors are temperature dependent and range from a low of 5.34x109 cm3mole−

1s−1, for reaction at 300 K of
HO2+i-C4H8→(CH3)2CCH2OOH

to 4.96x1013 cm3mole−1s−1, at 1500 K of
HO2+C2H4→CH2CH2OOH.
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QUANTUM CATALYSIS: THE MODELING OF CATALYTIC TRANSITION STATES
M.B. Hall, Department of Chemistry, Texas A&M University, College State, TX 77843, P. Margl,
Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta
T2N 1N4, Canada, G. Naray-Szabo, Department of Theoretical Chemistry, Lorand Eotvos
University, Pazmany Peter st. 2, H-117 Budapest, Hungary, V.L. Schramm, Department of
Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461,
D.G. Truhlar, Department of Chemistry and Supercomputer Institute, University of Minnesota,
207 Pleasant Street S.E., Minneapolis, MN 55455, R.A. van Santen, Eindhoven University of
Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands, A. Warshel, Department of
Chemistry, University of Southern California, Los Angeles, CA 90089, and J.L. Whitten, Physical
and Mathematical Sciences, North Carolina State University, Box 8201, Raleigh, NC 27695 (to
Appear in Transition State Modeling for Catalysis, D.G. Truhlar and K. Morokuma, eds., American
Chemical Society, Washington, DC 1998).

We present an introduction to the computational modeling of transition states for catalytic
reactions. We consider both homogeneous catalysis and heterogeneous catalysis, including
organometallic catalysts, enzymes, zeolites and metal oxides, and metal surfaces. We
summarize successes, promising approaches, and problems. We attempt to delineate the key
issues and summarize the current status of our understanding of these issues. Topics covered
include basis sets, classical trajectories, cluster calculations, combined quantum-
mechanical/molecular-mechanical (QM/MM) methods, density functional theory, electrostatics,
empirical valence bond theory, free energies of activation, frictional effects and
nonequilibrium solvation, kinetic isotope effects, localized orbitals at surfaces, the reliability
of correlated electronic structure calculations, the role of d orbitals in transition metals,
transition state geometries, and tunneling.
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TECHNICAL MEETINGS

JANUARY 7-9, 1999

SPECTROSCOPY OF RADICALS AND IONS: HIGH RESOLUTION SPECTROSCOPY GROUP MEETING OF
THE ROYAL SOCIETY OF CHEMISTRY
Southampton, UK.

Information: S. Riaz, The Royal Society of Chemistry, Burlington House, London, W1V 0BN,
UK, e-mail: riazs@rsc.org

JANUARY 10-14, 1999

EUROPEAN WINTER CONFERENCE ON PLASMA SPECTROCHEMISTRY
Pau, France.

Information: Congress Rive Droite, 28 rue Baudrimont, 33100 Bordeaux, France, 33(556) 32
82 29, Fax 33(556) 32 79 53.

JANUARY 11-14, 1999

37th AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT
Reno NV.

Information: R.L. Cook, Mississippi State University, 320 Etheredge Engineering Building,
P.O. Drawer MM, Mississippi State, MS 39762, (601) 325 2105, Fax (601) 325 8465, e-mail:
cook@dial.msstate.edu

JANUARY 17-22, 1999

GORDON RESEARCH CONFERENCE ON THE CHEMISTRY OF HYDROCARBON RESOURCES
Ventura CA.

Topics Include:
• Hydrocarbon Resources in the 21st Century
• Advances in Compositional and Instrumental Approaches to Hydrocarbon Chemistry
• Computational Approaches to Hydrocarbon Reaction Chemistry
• Frontiers of Catalysis in Hydrocarbon Reactions
• High-Temperature Hydrocarbon Chemistry
• Advances in Carbon Materials: Nano-Structures and Catalysts
• Membrane Reactors
• Advances in Methane Conversion Chemistry
Information: J.H. Shinn, Chevron Research and Technology, e-mail: shis@chevron.com or
http://www.grc.uri.edu
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JANUARY 21-26, 1999

ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE
Anaheim CA.

Information: E. Cooper, AAAS, (202) 326-6431, Fax (212) 789-0455, e-mail: ecooper@aaas.org,
http://www.aaas.org/meetings/scope

JANUARY 22-24, 1999

INTERNATIONAL SYMPOSIUM ON CLEAN COAL INITIATIVES
New Delhi, India.

Information: T.N. Singh, Chairman, Organizing Committee, CCI 99 and Director Central
Mining Research Institute, Barwa Road, Dhanbad 826 001, Bihar, India, 91(326) 202326/
203043, EPBX 91(326) 203070/203090, Fax 91(326) 202429/205028,
 e-mail: director@cscmri.ren.nic.in; root@cscmri.ren.nic.in

JANUARY 23-29, 1999

LASE '99: HIGH POWER LASERS AND APPLICATIONS
San Jose CA.

One of the International Symposia at Photonics West.
Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

JANUARY 24-27, 1999

13th INTERNATIONAL FORUM ON PROCESS ANALYTICAL CHEMISTRY
San Antonio TX.

Information: InfoScience Services, Conference Division, 3000 Dundee Road, Suite 409,
Northbrook, IL 60062, (847) 291-9161, Fax (847) 291-0097, e-mail: infoscience@ais.net,
http://www.ifpac.com

JANUARY 23-29, 1999

PHOTONICS WEST
San Jose CA.

Includes International Symposia on:
• LASE'99 - High-Power Lasers and Applications
• OPTOELECTRONICS '99 - Integrated Devices and Applications
• SPIE/IS&T's EI '99 - Electronic Imaging: Science and Technology
Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org
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FEBRUARY 6-12, 1999

PHOTONICS WEST
San Jose CA.

Information: The International Society for Optical Engineering, SPIE, Meetings Department,
P.O. Box 10, Bellingham, WA 98227, (360) 676-3290, http://www.spie.org

FEBRUARY 10-12, 1999

18th IEEE INTERNATIONAL PERFORMANCE, COMPUTING AND COMMUNICATIONS CONFERENCE
(IPCCC '99)
Scottsdale AZ.

Information: N. Malik, General Chairman, IBM Corporation, 11400 Burnet Road, Austin, TX
78758, (512) 838-5106, Fax (512) 838-8378, http://www.ipccc.org/ipccc99/

FEBRUARY 25-26, 1999

13th ANNUAL TECHNICAL CONFERENCE ON SOLVING ENVIRONMENTAL AND OTHER
TECHNOLOGICAL CHALLENGES IN COMBUSTION FOR THE NEXT CENTURY
Provo UT.

Conference at the Advanced Combustion Engineering Research Center. Topics will Include:
• Combustion Chemistry
• NOx /Pollutants
• Fine Particles
• Simulations/Validation
Information: Advanced Combustion Engineering Research Center, Brigham Young University,
45 CTB, Provo, UT 84602, (801) 378-4126; Fax (801) 378-3831.

FEBRUARY 28-MARCH 5, 1999

GORDON RESEARCH CONFERENCE ON GASEOUS IONS, STRUCTURE, ENERGETICS AND REACTION
DYNAMICS
Ventura CA.

Organizing Chairman: T. Baer
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

FEBRUARY 28-MARCH 5, 1999

GORDON RESEARCH CONFERENCE ON CHEMICAL REACTIONS AT SURFACES
Ventura CA.

Organizing Chairman: J. Yates
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu
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MARCH 1-4, 1999

SAE INTERNATIONAL CONGRESS AND EXPOSITION
Detroit MI.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

MARCH 7-12, 1999

PITTCON '99: 50th PITTSBURGH CONFERENCE ON ANALYTICAL CHEMISTRY AND APPLIED
SPECTROSCOPY
Orlando FL.

Information: L. Briggs, Pittsburgh Conference, 300 Penn Center Boulevard, Suite 332,
Pittsburgh, PA 15235, (800) 825-3221, Fax (412) 925-3224.

MARCH 8-11, 1999

24th INTERNATIONAL TECHNICAL CONFERENCE ON COAL UTILIZATION AND FUEL SYSTEMS
Clearwater FL.

Information: B. Sakkestad, Coal Utilization and Fuel Systems Conference Committee, 1156
Fifteenth Street, NW, Suite 525, Washington, DC 20005, (202) 296 1133, Fax (202) 223 3504,
e-mail: barbarasak@aol.com

♦ MARCH 14-17, 1999

INTERNATIONAL FIRE SAFETY CONFERENCE
New Orleans LA.

Information: FRCA, 851 New Holland Ave., P.O. Box 3535, Lancaster, PA 17604,
(717) 219-5616.

MARCH 14-18, 1999

1999 SPRING NATIONAL MEETING AND PETROCHEM EXPO OF THE AMERICAN INSTITUTE OF
CHEMICAL ENGINEERS
Houston TX.

Information: Meetings Department, American Institute of Chemical Engineers, United
Engineering Center, 345 East 47th Street, New York, NY 10017, (212) 2705-7338 or (800) 242-
4363, http://www.aiche.org
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MARCH 15-17, 1999

TRIPLE JOINT TECHNICAL MEETING OF THE EASTERN/CENTRAL AND WESTERN STATES SECTIONS
OF THE COMBUSTION INSTITUTE
Washington DC.

Information: M.D. Smooke, Becton Laboratory, Room 205, Department of Mechanical
Engineering, Yale University, New Haven, CT 06520, (203) 432-4344, Fax (203) 432-6775,
e-mail: mitchell.smooke@yale.edu, or
W.J. Pitz, L-14, Lawrence Livermore Laboratory, P.O. Box 808, Livermore, CA 94551, (510)
422-7730, Fax: (510) 422-2644, e-mail: pitz@llnl.gov, http://www.wssci.org/ or
http://odie.seas.ucla.edu/WSS/, or
D. Stocker, NASA Lewis Research Center, MS 500-115, 21000 Brookpark Road, Cleveland, OH
44135, (216) 433-2166, Fax (216) 433-8660, e-mail: dennis.stocker@lerc.nasa.gov

MARCH 15-19, 1999

5th ASME/JSME THERMAL ENGINEERING CONFERENCE: THERMAL ENGINEERING FOR COMBUSTION
SYSTEMS AND FIRE SAFETY
San Diego CA.

Topics will Include:
• Combustion Engines, Furnaces, Incinerators
• Combustion Synthesis, Materials Processing
• Fire Spread, Suppression
• Measurement, Modeling Methods
• Fundamental Physical Processes in Flames
Information: T. Simon, Department of Mechanical Engineering, University of Minnesota, 111
Church Street, SE, Minneapolis, MN 55455, (612) 625 5831, Fax (612) 624 5230, e-mail:
tsimon@me.umn.edu, http://www.asme.org/conf/A-JSME98/index.htm

MARCH 18-19, 1999

2nd POLLUTION PREVENTION TOPICAL WORKSHOP HOSTED BY THE ENVIRONMENTAL DIVISION OF
THE AMERICAN INSTITUTE OF CHEMICAL ENGINEERS
Houston TX.

Information: Meetings Department, American Institute of Chemical Engineers, United
Engineering Center, 345 East 47th Street, New York, NY 10017, (212) 2705-7338 or (800) 242-
4363, http://www.aiche.org, or Contact Conference Chairman S. Butner at
butner@battelle.org or J. Cramer at (212) 591-7950, e-mail: josec@aiche.org, or Program
Details at http://www.seattle.battelle.org/AICHE98/

MARCH 21-25, 1999

217th NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Anaheim CA.

Division of Fuel Chemistry:
• Molecular Approaches to CH Activation and Selective Oxidation of Alkanes

R. Periana, Catalytica Advanced Technologies, 430 Ferguson Drive, Building 3, Mountain
View, CA 94043-5272, (650) 940-6396, Fax (650) 968-7129, e-mail: rap@mv.catalytica-
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inc.com; R.H. Crabtree, Department of Chemistry, Yale University, 225 Prospect Street,
New Haven, CT 06520-8107, (203) 432-3925, Fax (203) 432-6144, e-mail:
crabtree@minerva.cis.yale.edu

• Renewable Fuels and Chemicals
R. Evans, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-
3393, (303) 384-6284, e-mail: evansb@tcplink.nrel.gov

• Chemistry of Reactive Intermediates and Modeling in Hydrocarbon Conversion
J.A. Franz; M.T. Klein, Department of Chemical Engineering, University of Delaware,
Newark, DE 19716

• New Catalysts for Hydrogenation and Hydrocracking of Fuels
M.E. Davis, California Institute of Technology, Pasadena, CA 91125, (818) 395-6811, e-mail:
mdavis@macpost.caltech.edu; S. Zones, Chevron, (510) 242-3524

• Role of Water in Organic Reactions
M. Lewan, U.S. Geological Survey, Box 25046 MS 977, Denver Federal Center, Denver, CO
80255, (303) 236-9391, e-mail: mlewan@bpgsvr.cr.usgs.gov; G.D. Cody, Geophysical
Laboratory, Institute of Washington, 5251 Broad Branch Road, N.W., Washington, DC
20015, (202) 686-2410 ext. 2479, e-mail: cody@gl.ciw.edu

Division of Petroleum Chemistry:
• Lower Alkane Oxidation

U.S. Ozkan, Department of Chemical Engineering, Ohio State University, 140 W. 19th
Avenue, Columbus, OH 43210, (614) 292-6623, Fax (614) 292-3769, e-mail: ozkan.1@osu.edu

Division of Physical Chemistry:
• Physical Chemistry at High Pressure and Temperature

A.P. Alivisatos, Department of Chemistry, University of California, Berkeley, CA 94720,
(510) 643-7371, Fax (510) 642-6911, e-mail: alivis@uclink4.berkeley.edu

• Atmospheric Chemistry
C.E. Miller, Department of Chemistry, Haverford College, Haverford, PA 19041, (610) 896-
1388, Fax (610) 896-4904, e-mail: cmiller@haverford.edu

• Unimolecular Reactions and Intramolecular Dynamics
S.J. Klippenstein, Chemistry Department, Case Western Reserve University, Cleveland, OH
44106, e-mail: sjk5@po.cwru.edu

Complete Information at http://www.acs.org/meetings/ anaheim/welcome.htm

MARCH 21-26, 1999

23rd ENGINEERING FOUNDATION CONFERENCE ON STATIONARY SOURCE SAMPLING AND ANALYSIS
FOR AIR POLLUTANTS
Ventura CA.

Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441.

MARCH 22-26, 1999

AMERICAN PHYSICAL SOCIETY CENTENNIAL MEETING
Atlanta GA.

Information: Meetings Department, American Physical Society, One Physics Ellipse, College
Park, MD 20740, (301) 209-3286, Fax (301) 209-0866, e-mail: meetings@aps.org
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♦ MARCH 25-26, 1999

ADVANCED MARINE MACHINERY SYSTEMS WITH LOW POLLUTION AND HIGH EFFICIENCY
Newcastle upon Tyne, UK.

Information: A. Evripidou, The Institute of Marine Engineers, 76 Mark Lane, London
EC3R 7JN, UK, (171) 481-8493, Fax (171) 488 1854, e-mail: ae@imare.org.uk

♦ MARCH 29-APRIL 2, 1999

FRONTIERS IN SCIENCE AND TECHNOLOGY: SCIENCE OF CLIMATE
La Jolla CA.

Information: Frontier Scientific Research Conference, La Jolla International School of
Science, Institute for Advanced Physical Studies, 7596 Eads Ave., La Jolla, CA 92038,
e-mail:wisdom@stefan-university.edu

♦ APRIL 7-9, 1999

10th ANNUAL UNITED STATES HYDROGEN MEETING OF THE NATIONAL HYDROGEN ASSOCIATION
Vienna VA.

Information: National Hydrogen Association, 1800 M Street, N.W., Suite 300, Washington DC,
20036, (202) 223-5547.

♦ APRIL 9-10, 1999

NEW ENGLAND SECTION SPRING MEETING OF THE AMERICAN PHYSICAL SOCIETY
Yale University, New Haven CT.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

♦ APRIL 11-14, 1999

13th TOPICAL CONFERENCE ON APPLICATIONS OF RADIOFREQUENCY POWER PLASMAS
Annapolis MD.

Information: S. Bernabei, Princeton Plasma Physical Laboratory, P.O. Box 451, Princeton, NJ
08543, e-mail: sbernabei@pppl.gov

♦ APRIL 11-14, 1999

ASME CONFERENCE ON RENEWABLE AND ADVANCED ENERGY SYSTEMS FOR THE 21st CENTURY
Lahaina, Maui HI.

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 705-7037, Fax (212) 705-7143, http://www.asme.org
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♦ APRIL 12-15, 1999

40th AIAA/ASME/ASCE/AHS/ASC STRUCTURES, STRUCTURAL DYNAMICS AND MATERIALS
CONFERENCE
St. Louis MO.

Information: Meetings Department, American Institute of Aeronautics and Astronautics, 1801
Alexander Bell Drive, Suite 500, Reston, VA 20191, (703) 264-7500 or (800) 639-2422, e-mail:
custserv@aiaa.org, http://www.aiaa.org

♦ APRIL 13-16, 1999

13th INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Kyongju, South Korea.

Information: OFS-13 Secretariat, Department of Physics, KAIST, 373-1 Kusong-dong,
Yusong-gu, Taejon 305-701, South Korea, e-mail: ejsohn@cais.kaist.ac.kr

♦ APRIL 14, 1999

JOINT MEETING OF THE BRITISH SECTION OF THE COMBUSTION INSTITUTE AND UKELG:
INDUSTRIAL COMBUSTION HAZARDS

Information: J. Griffiths, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK,
011-44(1132) 336462, Fax (1132) 336565.

♦ APRIL 14-15, 1999

THE UK COAL RESEARCH FORUM ANNUAL MEETING
London UK.

Will Include Workshops on
• Fundamental Coal Research
• Conventional and Advanced Power Generation
Information: D.J.A. McCaffrey, CRE Group Ltd., Stoke Orchard, Cheltenham, Gloucester
GL52 4RZ, UK, (1242) 673361, Fax (1242) 677010.

APRIL 14-16, 1999

4th INTERNATIONAL MEETING ON CATALYTIC COMBUSTION
San Diego CA.

Information: http://www.catalytica-inc.com/WCC4
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♦ APRIL 19-22, 1999

CHAPMAN CONFERENCE ON ATMOSPHERIC SCIENCE ACROSS THE STRATOSPHERE
Annapolis MD.

Information: American Geophysical Union, 2000 Florida Avenue N.W., Washington, DC
20009, (202) 462-6900, (800) 966-2481, Fax (202) 328-0566, Service and Information Center:
service@agu.org, http://www.agu.org

APRIL 19-23, 1999

2nd INTERNATIONAL SYMPOSIUM ON HEAT AND MASS TRANSFER UNDER PLASMA CONDITIONS:
PLASMA '99
Antalya, Turkey.

Topics will Include:
• Turbulence Phenomena in Thermal Plasmas
• Plasma Transport Properties of Complex Mixtures Including Diffusion
• Radiative Transport under Plasma Conditions
• Non-equilibrium Effects in Thermal Plasma Systems
• Plasma-Wall Boundary Layers and Electrode Erosion Phenomena
• Electromagnetically Induced Flow Effects in Plasma Systems
• Plasma Particulate Interactions
• Transport Processes in Dusty Plasmas
• Rapid Solidification During Plasma Deposition
• Particle Nucleation and Growth in Plasma Reactors
• Waste Treatments and On-line Controls in Connection with Environmental Regulations
• Material Behavior under Extremely High Heat Fluxes (>109 Wm−2)
• Flash Evaporation
• Diagnostic Techniques in Plasma Chemical Applications, in Dusty Plasmas, in Particle

Flattening and Splat Cooling
• On-line Control in Plasma Processes
• New Branches of Plasma Physics and Transport Phenomena (MAD, Improved MHD, EHD, DL

and DL Currents)
Information: P. Fauchais, Faculte des Sciences, Universite de Limoges, 123 Avenue A.
Thomas, 87060 Limoges Cedex-France, (33-5) 55 45 74 21, Fax (33-5) 55 45 72 11, e-mail:
fauchais@unilim.fr, or F. Arinc, Mechanical Engineering Department, Middle East Technical
University, 06531 Ankara, Turkey, (90) 312-210 5214, Fax (90) 312-210 1331, e-mail:
arinc@metu.edu.tr, http://ichmt.me.metu.edu.tr
Deadline: 4-Copies of Extended Abstract to P. Fauchais (above) by October 15, 1998, Abstracts
for Poster Presentations by January 30, 1999.

APRIL 23-24, 1999

NEW YORK SECTION SPRING MEETING OF THE AMERICAN PHYSICAL SOCIETY
Murray Hill NJ.

Information: R.S. Galik, Vice Chair, 108 Newman Laboratory, Cornell University, Ithaca, NY
14853, (607) 255 3633, Fax (607) 254 4552, e-mail: rsg@ins62.ins.cornell.edu
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APRIL 25-30, 1999

CORROSION '99: 54th NACE INTERNATIONAL CONFERENCE AND EXHIBITION
San Antonio TX.

Information: Meetings Department, NACE, P.O. Box 218340, Houston, TX 77084, (281)
228-6223, Fax (281) 228-6300, e-mail: msd@mail.nace.org, http://www.nace.org

♦ APRIL 26-30, 1999

FRONTIERS IN SCIENCE AND TECHNOLOGY: AEROSOL SCIENCE AND TECHNOLOGY
La Jolla CA.

Information: Frontier Scientific Research Conference, La Jolla International School of
Science, Institute for Advanced Physical Studies, 7596 Eads Ave., La Jolla, CA 92038,
e-mail:wisdom@stefan-university.edu

♦ APRIL 27-29, 1999

9th ANNUAL MEETING OF THE HALON OPTIONS TECHNICAL WORKING CONFERENCE
Albuquerque NM.

Topics will Include:
• Halon Replacements and Alternatives
• Advanced Technologies
• Toxicity Issues
• Halon Bank Management and Destruction
• Fire Suppression Testing
• Regulatory and Environmental Issues
• Inert Gases
• Advanced Agents
• Agent Decomposition
• Laboratory Testing
• Misting Technologies
• Particulate Aerosols
• Basic Research
Special Sessions are Planned on:
• CF3I
• Bromoalkane Blends
• Next-Generation Fire Suppression Technology Program
• Informed Decisions: A User's Perspective
Information: R.E. Tapscott, Director, Center for Global Environmental Technologies,
University of New Mexico, 901 University Boulevard SE, Albuquerque, NM 87106,
(505) 272-7252, Fax (505) 222-8230, e-mail: tapscott@nmeri.unm.edu

♦ APRIL 30-MAY 1, 1999

OHIO SECTION SPRING MEETING OF THE AMERICAN PHYSICAL SOCIETY
Flint, MI.

Information: Bahram Roughani, e-mail: broughan@nova.gmi.edu



11

♦ MAY 2-5, 1999

4th ITALIAN CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING
Florence, Italy.

Information: AUDIC ICheaP-4 Secretariat, Piazza Morandi 2, 20121 Milano, Italy,
(02) 760-21175, Fax (02) 799644, e-mail: aidic@aidic.it, Web Site: http://www.aidic.it

♦ MAY 2-7, 1999

195th MEETING OF THE ELECTROCHEMICAL SOCIETY
Seattle WA.

Symposia Include among Others:
• General Session on Corrosion
• Fullerenes: Chemistry, Physic s and New Directions
Information: http://www.electrochem.org/meetings

♦ MAY 3-6, 1999

INTERNATIONAL FUELS AND LUBRICANTS SPRING MEETING AND EXPOSITION OF THE SOCIETY OF
AUTOMOTIVE ENGINEERS
Dearborn MI.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

♦ MAY 4-7, 1999

5th ASIAN CONFERENCE ON ANALYTICAL SCIENCES
Xiamen, China.

Information: Sun Dahai, Department of Chemistry, Xiamen University, Xiamen 361005,
China, Fax 86(592) 218 6401, e-mail:asianalysis@xmu.edu.cn, Web Site:
http://www.xmu.edu.cn/sedc/english/confer.htm

MAY 9-12, 1999

2nd ASIA-PACIFIC CONFERENCE ON COMBUSTION
Tainan, Taiwan

Topics will Include:
• Gaseous Combustion
• Liquid Fuels, Droplet and Spray Combustion
• Solid Fuels and Coal Combustion
• Reaction Kinetics of Combustion, Pollutant formation and Control
• Laminar Flame Combustion
• Turbulent Premixed, Partially Premixed and Non-Premixed Combustion
• Detonations and Supersonic Combustion
• Internal Combustion Engines, Gas Turbine Engines and Rocket Engines
• Stationary Combustion Systems and Incineration
• Fire Research
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• Material Synthesis and Catalytic Combustion Manufacturing
• Combustion Modeling and Computational Combustion
• Combustion in Microgravity Systems
Information: T.-H. Lin, Department of Mechanical Engineering, National Cheng Kung
University, 1 Ta-Shue Road, Tainan, Taiwan 701, 886(6)2757575, ext. 62167, Fax
886(6)2352973, e-mail: thlin@mail.ncku,edu.tw

MAY 10-12, 1999

21st INTERNATIONAL POWER SOURCES SYMPOSIUM
Brighton UK.

Information: R.D. Bailey, Crundalls, Gedges Hill, Matfield, Kent TN12 7EA, UK, (44)1892
723408, Fax (44)1892 723874, e-mail: ipss@marketdevelopco.demon.co.uk

♦ MAY 10-14, 1999

THE 1999 INTERNATIONAL CONFERENCE ON INCINERATION AND THERMAL TREATMENT
TECHNOLOGIES
Orlando FL.

Information: Conference Coordinator, L.B. Cohen, University of California, EH&S, 300
University Tower, Irvine, CA 92697, (949) 824-5859, Fax (949) 824-1900, e-mail:
lbarnow@uci.edu

MAY 16-19, 1999

ASME FLUIDIZED BED COMBUSTION CONFERENCE
Savannah GA.

Information: Meetings Department, ASME, 345 E. 47th St., New York, NY 10017, (212) 705-
7037, Fax (212) 705-7143.

♦ MAY 17-19, 1999

7th ASME ANNUAL NORTH AMERICAN WASTE-TO-ENERGY CONFERENCE
Tampa FL.

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 705-7037, Fax (212) 705-7143, http://www.asme.org

MAY 17-19, 1999

32nd MIDDLE ATLANTIC REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Madison NJ.

Information: G. Heinz, 30 Bunker Hill Run, East Brunswick, NJ 08816, (732) 257 5754.
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♦ MAY 18-20, 1999

THE 5th INTERNATIONAL MICROGRAVITY COMBUSTION WORKSHOP
Cleveland OH.

Information: A. Heyward, Outreach Programs Manager, National Center for Microgravity
Research on Fluids and Combustion, NASA Lewis Research Center, Cleveland OH, (216)
433-8173, e-mail: Ann.O.Heyward@lerc.nasa.gov, http://www.ncmr.org/events/workshop.html

MAY 18-21, 1999

JOINT MEETING OF THE BRITISH, GERMAN AND FRENCH SECTIONS OF THE COMBUSTION
INSTITUTE
Nancy, France.

Information: C. Poulain (CPIC), 33(0)383301161, Fax 33(0)383175215, e-mail:
cpic@ensic.u-nancy.fr

MAY 21-22, 1999

1st MEETING OF THE NORTHWEST SECTION OF THE AMERICAN PHYSICAL SOCIETY
Vancouver BC, Canada.

Information: E. Henley, e-mail: henley@nucthy.phys.washington.edu

MAY 23-28, 1999

CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO 99) AND THE QUANTUM ELECTRONICS AND
LASER SCIENCE CONFERENCE (QELS 99)
Baltimore MD.

Information: Information: Meetings Department, Optical Society of America, 201
Massachusetts Avenue, Washington, DC 20036, (202) 223-8130.

♦ MAY 30-JUNE 2, 1999

82nd CANADIAN SOCIETY FOR CHEMISTRY CONFERENCE AND EXHIBITION
Toronto, Canada.

Information: P. Sundar Sundararajan, Xerox Research Center of Canada, 2660 Speakman
Drive, Mississauga, Ontario L5K 2L1, Canada, (905) 823-7091 ext. 219,
e-mail:Sundar.Sundararajan@crt.xerox.com

♦ JUNE 6-10, 1999

5th INTERNATIONAL CONFERENCE ON CHEMICAL STRUCTURES
Noordwijkerhout, The Netherlands.

Information: G. Grethe, c/o MDL Information Systems Inc., 14600 Catalina Street, San
Leandro, CA 94577, (510) 895-1313 ext. 1430, Fax (510) 614-3638, e-mail:guenter@mdli.com
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♦ JUNE 6-11, 1999

GORDON RESEARCH CONFERENCE ON OSCILLATIONS AND DYNAMIC INSTABILITIES IN CHEMICAL
SYSTEMS
Il Ciocco, Italy.

Organizing Chairperson: R. Larter
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ JUNE 7-8, 1999

SPQ-99: SPECTROSCOPY IN PROCESS AND QUALITY CONTROL
East Brunswick NJ.

Information: R. Vallari, Advanstar Communications, 101 Fieldcrest Avenue, Raritan Plaza III,
Edison, NJ 08837, (732) 225-9500, Fax (732) 225-0211, e-mail: rvallari@advanstar.com

♦ JUNE 7-10, 1999

ASME TURBO EXPO '99: LAND, SEA AND AIR, 44th ASME INTERNATIONAL GAS TURBINE AND
AEROENGINE TECHNICAL CONGRESS EXPOSITION AND USERS SYMPOSIUM
Indianapolis IN.

Information: Meetings Department, American Society for Mechanical Engineers, 345 E. 47th
Street, New York, NY 10017, (212) 705-7037, Fax (212) 705-7143, http://www.asme.org

♦ JUNE 7-11, 1999

14th INTERNATIONAL CONFERENCE ON LASER SPECTROSCOPY ICOLS '99
Innsbruck, Austria.

Topics will Include:
• Atomic and Molecular Laser Spectroscopy
• Precision Spectroscopy
• Laser Cooling and Trapping
• Quantum Optics
• Matter Wave Optics and Interferometry
• Nonlinear Optics and Spectroscopy
• Ultrafast and Strong Field Phenomena
• New Laser Sources
• Applications of Laser Spectroscopy
• Bose-Einstein Condensation and Atom Lasers
Information: D. Leibfried, Institut f. Experimentalphysik, Universitaet Innsbruck,
Technikerstrasse 25, A-6020 Innsbruck, Austria, Fax (43) 512-507-2952, e-mail:
icols99@uibk,ac.at, http://physics.uibk.ac.at/ICOLS99
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♦ JUNE 13-18, 1999

GORDON RESEARCH CONFERENCE ON ATMOSPHERIC CHEMISTRY
Salve Regina University, Newport RI.

Organizing Chairpersons: W.H. Brune and J.E. Penner
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ JUNE 13-18, 1999

47th CONFERENCE ON MASS SPECTROMETRY AND ALLIED TOPICS
Dallas TX.

Information: J. Sjoberg, American Society for Mass Spectrometry, 1201 Don Diego Avenue,
Santa Fe, NM 87505, (505) 989-4517, Fax (505) 989-1073, e-mail: asms@asms.org

JUNE 14-18, 1999

LASER '99
Munich, Germany.

Information: Messe Munchen GmbH, Messegelande, D-80325 Munchen, Germany, 49(0) 89 51
070, Fax 49(0) 89 51 07 506, e-mail: info@messe-muenchen.de

♦ JUNE 16-20, 1999

4th INTERNATIONAL CONFERENCE ON DISSOCIATIVE RECOMBINATION
Stockholm, Sweden.

Information: M. Larsson, Department of Physics, Stockholm University, Box 6730, S-11385
Stockholm, Sweden, e-mail: mats.larsson@physto.se

JUNE 19-23, 1999

MEDITERRANEAN COMBUSTION SYMPOSIUM OF THE COMBUSTION INSTITUTE AND THE
INTERNATIONAL CENTER FOR HEAT AND MASS TRANSFER
Antalya, Turkey.

Topics will Include:
• Stationary Sprays and Gas Combustion Systems
• Combustion of Solid Fuels PF, FBC and Waste
• Internal Combustion Engines
• Optical Diagnostics and Radiative Transfer
• Flame Dynamics and Turbulence
• Pollutants
• Fire/Explosions
• Kinetics
Information: F. Arinc, Secretary General, ICHMT, Mechanical Engineering Department,
Middle East Technical University, 06531 Ankara, Turkey, (90) 312-210 1429, Fax (90) 312-210
1331, e-mail: arinc@metu.edu.tr, http://ichmt.me.metu.edu.tr
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Deadline: Submit Camera Ready Copy of the Full Paper together with Three Additional
Copies, Plus One 3.5" Floppy Disk Containing in a Word File only the Title, Authors,
Affiliation and Abstract by November 1, 1998 to Martine van Hapert, Istituto di Richerche
sulla Combustione - CNR, P.le Tecchio, 80, 80125 Napoli, Italy, (39) 81-768 2263, Fax (39) 81-
593 6936, e-mail: martine@irc.na.cnr.it
Work in Progress Presentations: Send One Camera Ready Abstract and 2-Copies by February
1, 1999 to Filiz Ozler, Mechanical Engineering Department, Middle East Technical University,
06531 Ankara, Turkey, (90) 312-210 5213, Fax (90) 312-210 1331, e-mail: ichmt@metu.edu.tr

JUNE 20-22, 1999

54th NORTHWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Portland OR.

Information: T. Dunne, 3203 Southeast Woodstock Boulevard, Portland, OR 97202, (503) 777-
7207, Fax (503) 777-7769.

♦ JUNE 20-24, 1999

35th AIAA/ASME/SAE/ASEE JOINT PROPULSION CONFERENCE AND EXHIBIT
Los Angeles CA.

Information: Meetings Department, American Institute of Aeronautics and Astronautics, 1801
Alexander Bell Drive, Suite 500, Reston, VA 20191, (703) 264-7500 or (800) 639-2422, e-mail:
custserv@aiaa.org, http://www.aiaa.org

♦ JUNE 20-25, 1999

GORDON RESEARCH CONFERENCE ON LASER DIAGNOSTICS FOR COMBUSTION RESEARCH
Il Ciocco, Italy.

Organizing Chairpersons: K. Kohse-Hoinghaus and J.B. Jeffries
Information: J.B. Jeffries, SRI International, Molecular Physics Laboratory, 333 Ravenswood
Avenue, Menlo Park, CA 94025, (650) 859-6341, Fax (650) 859-6196, e-mail:
jeffries@mplvax.sri.com, http://pc1.chemie.uni-bielefeld.de/gordon
Deadline: Posters, February 15, 1999.

JUNE 21-23, 1999

31st CENTRAL REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Columbus OH.

Information: J. Parson, Chemistry Department, Ohio State University, 100 W. 18th Avenue,
Columbus, OH 43210, (614) 292-3267, Fax (614) 292-1685, e-mail: parson2@osu.edu

♦ JUNE 21-24, 1999

FOURIER TRANSFORM SPECTROSCOPY: NEW METHODS AND APPLICATIONS
Santa Barbara CA.

Information: Optical Society of America, Meetings Department, 2010 Massachusetts Ave NW,
Washington, DC 20036, (202) 223-0920, e-mail:  confserv@osa.org
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♦ JUNE 21-25, 1999

COURSE ON THE FUNDAMENTALS OF INTERNAL COMBUSTION ENGINES: PERFORMANCE,
EFFICIENCY AND EMISSIONS
MIT, Cambridge MA.

Organized by W.K. Cheng and J.B. Heywood
Information: Professional Institute, Room 8-201, Massachusetts Institute of Technology,
Cambridge, MA 02139, (617) 253-2101, Fax (617) 253-8042, e-mail: professional-
institute@mit.edu, Web Site: http://web.mit.edu/professional/summer/
Course Fee: $2250.

JUNE 21-26, 1999

28th NORTHEAST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Potsdam NY.

Information: P. Zuman, Department of Chemistry, Potsdam University, Potsdam, NY 13699,
(315) 268-2340.

JUNE 27-30, 1999

PULSED POWER CONFERENCE
Monterey CA.

Information: C. Stallings, Physics International, 2700 Merced Street, San Leandro, CA 94577,
e-mail: chstallings@corp.olin.com

JUNE 27-30, 1999

6th INTERNATIONAL CONGRESS ON TOXIC COMBUSTION BYPRODUCTS
Karlsruhe, Germany.

Information: e-mail: pic22@ict.uni-karlsruhe.de, http://www.ict.uni-karlsruhe.de/pic99/
Deadline: 2-Page Abstract Due by December 31, 1998, Final Paper June 1999 and will be
Published in Combustion Science and Technology.

♦ JUNE 27-JULY 2, 1999

GORDON RESEARCH CONFERENCE ON GRAVITATIONAL EFFECTS IN PHYSICO-CHEMICAL SYSTEMS
New England College, Henniker NH.

Organizing Chairman: R.F. Sekerka
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu
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♦ JUNE 27-JULY 2, 1999

GORDON RESEARCH CONFERENCE ON PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA
Colby-Sawyer College, New London NH.

Organizing Chairman: J. Power
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ JUNE 28-JULY 1, 1999

17th APPLIED AERODYNAMICS CONFERENCE/14th AIAA COMPUTATIONAL FLUID DYNAMICS
CONFERENCE/30TH AIAA FLUID DYNAMICS CONFERENCE/30TH AIAA PLASMADYNAMICS AND LASERS
CONFERENCE/33RD AIAA THERMOPHYSICS CONFERENCE
Norfolk VA.

Information: Meetings Department, American Institute of Aeronautics and Astronautics, 1801
Alexander Bell Drive, Suite 500, Reston, VA 20191, (703) 264-7500 or (800) 639-2422, e-mail:
custserv@aiaa.org, http://www.aiaa.org

JUNE 29-JULY 1, 1999

INTERFLAM '99
Edinburgh, Scotland.

Topics will Include:
• Advances in Detection, Extinction and Suppression - Halon Replacement
• Applied Fire Safety Science and the Fire Service
• Comparison of Computer Models with Experimental Data
• Disaster Mitigation and Large Fire Studies (Forest Fires)
• Education
• Fire Behavior of Materials
• Fire Dynamics - Flame Spread and Heat Release Studies
• Fire Risk Assessment
• Harmonization of Fire Safety Standards
• Heat Transfer from Flames
• Human Behavior and Evacuation Modeling
• Interpretation of Small Scale Test Datea
• Properties of Combustion Products
• Performance Based Codes
• Structural Behavior
Information: C. Franks, Conference Secretariat, Interscience Communications Ltd., West Yard
House, Guildford Grove, Greenwich, London Se10 8JT, UK, 44(181)692 5050, Fax 44(181)692
5155, e-mail: intercomm@dial.pipex.com.uk
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♦ JULY 4-6, 1999

2nd INTERNATIONAL SYMPOSIUM ON INCINERATION AND FLUE GAS TREATMENT TECHNOLOGIES
Sheffield UK.

Information: J. Black, Conference Department, IChemE, 165-189 Railway Terrace, Rugby
CV21 3HQ, Warwickshire, UK, 011-44 (1788) 578214, Fax (1788) 577182, e-mail:
jblack@icheme.org.uk

♦ JULY 5-7, 1999

15th ANNUAL CONFERENCE ON LIQUID ATOMIZATION AND SPRAY SYSTEMS
Toulouse, France.

Information: Secretariat ILASS-Europe '99, ONERA-Centre de Toulouse, 2 Av. Edourd Belin,
BP 4025, 31055 Toulouse Cedex, France, (5) 62 25 25 82, Fax (5) 62 25 25 83, e-mail:
gerard.lavergne@onecert.fr

JULY 5-9, 1999

STEREOCHEMISTRY AND CONTROL IN MOLECULAR REACTION DYNAMICS. A DISCUSSION
COMPARING FREQUENCY, TEMPORAL AND PHASE CONTROL STRATEGIES TO PROBE ELEMENTARY
CHEMICAL PROCESSES: A FARADAY DISCUSSION OF THE ROYAL SOCIETY OF CHEMISTRY
Leeds, UK.

Topics will Include:
• High Resolution Studies (Both Frequency and Time Resolved) of Molecular

Photodissociation or Photoinitiated Processes
• Control of Reactivity via Collision Energy, Selective Vibration of Reagents, or Reagent

Alignment
• Demonstrations of Active or Coherent Control of Chemical Processes
Information: http://www.chem.leeds.ac.uk/faraday 113/

JULY 5-9, 1999

6th INTERNATIONAL SYMPOSIUM ON FIRE SAFETY SCIENCE
Poitiers, France.

Topics will Include:
• Fire Physics
• Fire Chemistry
• Smoke and Toxic Hazard
• Fire Behavior of Materials
• Stochastic Modeling and Risk Assessment
• Human Behavior and Egress
• Fire Spread
• External Fires
• Structural Behavior
• Fire Detection and Suppression
• Advanced Applications of Fire Safety Science
• Specialized topics in Fire Safety and Protection
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Information: 6th IAFSS Symposium Organizers, LCD-ENSMA, Teleport 2, B.P. 109-86960
Futuroscope Cedex, France, 33(0)5 49 49 82 90, Fax 33(0)5 49 49 82 91, e-mail:
iafss6@lcd.ensma.fr

♦ JULY 11-16, 1999

GORDON RESEARCH CONFERENCE ON THE CHEMISTRY AND PHYSICS OF THE DYNAMICS OF SIMPLE
SYSTEMS
Salve Regina University, Newport RI.

Organizing Chairman: C. Chandler
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ JULY 11-16, 1999

GORDON RESEARCH CONFERENCE ON FREE RADICAL REACTIONS
Holderness School, Plymouth NH.

Organizing Chairman: D.P. Curran
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ JULY 11-16, 1999

GORDON RESEARCH CONFERENCE ON THE PHYSICS AND CHEMISTRY OF MATRIX ISOLATED SPECIES
Plymouth State College, Plymouth NH.

Organizing Chairman: B. Ault
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ JULY 12-15, 1999

CLEAN AIR V: 5th INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND COMBUSTION FOR A
CLEAN ENVIRONMENT
Lisbon, Portugal.

Information: Maria da Graca Carvalho, Mechanical Engineering Department, Instituto
Superior Tecnico, Av Rovisco Pais, 1096 Lisbon Codex, Portugal, 351 (1) 841 7372 or 7186,
Fax 351 (1) 847 5545 or (1) 726 2633, e-mail: cleanair@esoterica.pt

JULY 12-16, 1999

24th INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES
Warsaw, Poland.

Information: J. Wolowski, Institute of Plasma Physics and Laser Microfusion, 23 Hery St.,
P.O. Box 49, 00-908 Warsaw, Poland, e-mail: icpig99@ifpilm.waw.pl
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JULY 18-23, 1999

THE 1999 DYNAMICS OF MOLECULAR COLLISIONS CONFERENCE
Lake Harmony PA.

Information: J.J. Valentini, Department of Chemistry, Columbia University, New York, NY
10027, (212) 854-7590, e-mail: Bitnet,VA1Valentini@cuchem

♦ JULY 18-23, 1999

GORDON RESEARCH CONFERENCE ON ENERGETIC MATERIALS
Queen's College, Oxford UK.

Organizing Chairman: P.J. Haskins
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ JULY 18-23, 1999

GORDON RESEARCH CONFERENCE ON PHOTOIONS, PHOTOIONIZATION AND PHOTODETACHMENT
Plymouth State College, Plymouth NH.

Organizing Chairman: E. Poliakoff
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

JULY 18-23, 1999

SPIE ANNUAL MEETING
Denver CO.

Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

JULY 18-23, 1999

ASME/JSME FLUIDS ENGINEERING CONFERENCE
San Francisco CA.

Symposium Programs Include:
• Industrial Applications of Swirling Flows, Organizer, M. Padmanabhan, Alden Research

Laboratory, 30 Shrewsbury St., Holden, MA 01520, (508) 829-6000, Fax (508) 829-5939,
e-mail: Padu@aldenlab.com

• Numerical Developments in CFD, Organizer, M. Dhaubhadel, Ford Motor Company, (313)
248-5501, (313) 322-1733, e-mail: Mdhaubha@ford.com

• 8th International Symposium on Gas/Particle Flows, Organizer, D. Stock, Washington State
University, Pullman, WA 99164, (509) 335-3223, Fax (509) 335-4662, e-mail:
stock@mme.wsu.edu
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• Turbulent Mixing and Diffusion, Organizers, J.C. Hill, Iowa State University, and K. Ghia,
University of Cincinnati.

• Thermal Anemometry, Organizers, J. Foss, Michigan State University, East Lansing, MI
48824, (517) 355-3337, Fax (517) 353-5547, e-mail: Foss@msu.egr, or O.F. Turan, e-mail:
Ofturan@dingo.vut.edu.au

• Experimental and Numerical Flow Visualization and Laser Anemometry, Organizer, B.
Kahlighi, GM Research & Development, Warren, MI 48090, (810) 986-0885, Fax (810) 986-
0918, e-mail: Bkhaligh@cmsa.grm.com

• Finite Element Applications in Fluid Mechanics, Organizer, M. Dhaubhadel, Ford Motor
Company, 2000 Rotunda Dr., Dearborn, MI 48121, (313) 248-5501, Fax (313) 322-1733,
e-mail: Mdhaubha@ford.com

• Shock Waves and Compressible Flows, Organizers, M. Morris, Bradley University, O. Baysal,
Old Dominion University, and A. Kuhl, Lawrence Livermore.

• Optical Methods and Image Processing in Fluid Mechanics, Organizer, R.J. Adrian,
University of Illinois, Department of Theoretical and Applied Mechanics, University of
Illinois, 216 Talbot Laboratory, 104 S. Wright St., Urbana, IL 61801, (217) 333-1793, Fax
(217) 244-5707, e-mail: r-adrian@uiuc.edu

♦ JULY 22-27, 1999

21st INTERNATIONAL CONFERENCE ON THE PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS,
ICPEAC '99
Sendai, Japan.

Information: M. Matsuzawa, Applied Physics and Chemistry, University of Electro-
Communications, Tokyo, 182-8585, Japan, e-mail: michio@pc.uec.ac.jp,
http://power1.pc.uec.ac.jp/sendai

♦ JULY 25-30, 1999

INTERNATIONAL CONFERENCE ON ANALYTICAL CHEMISTRY: ANALYTICAL SCIENCE IN THE NEXT
MILLENNIUM
Dublin, Ireland.

Information: R. Smyth, Dublin City University, Dublin 9, Ireland, (353) 1-7045-308, Fax
(353) 1-7045-032, e-mail: smythm@ccmail.dcu.ie

JULY 25-30, 1999

17th INTERNATIONAL COLLOQUIUM ON THE DYNAMICS OF EXPLOSIONS AND REACTIVE SYSTEMS
Heidelberg, Germany.

Information: U. Riedel, Universitat Heidelberg, IWR, Im Neuenheimer Feld 368, D-69120
Heidelberg, Germany, 49(6221) 54 8887, Fax 49(6221) 54 8884, e-mail:
icders99@iwr.uni-heidelberg.de, http://reaflow.iwr.uni-heidelberg.de/icders99.html
Deadline: Camera ready Extended Abstracts (up to 4-Pages) of Papers or Posters by December
1, 1998. Electronic Submission is Encouraged, and should be Addressed to: J. Buckmaster,
321A Talbot Laboratory, 104 S. Wright St., Urbana, IL 61801, (217) 333 1803, Fax (217) 244
0720, e-mail: icders@uiuc.edu
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♦ JULY 25-30, 1999

GORDON RESEARCH CONFERENCE ON NONLINEAR OPTICS AND LASERS
Colby-Sawyer College, New London NH.

Organizing Chairman: A. Weiner
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

AUGUST 1-5, 1999

16th INTERNATIONAL SYMPOSIUM ON COMBUSTION PROCESSES
Kazimierz Dolny, Poland.

Topics will Include:
• Combustion in IC Engines
• Combustion Generated Pollutants
• Combustion Diagnostics
• Combustion Chemistry and Physics
• Flames and Detonations
• Fires and Explosions
• Heterogeneous Combustion
• Practical Combustion Systems
• Mathematical Modeling in Combustion
Information: A. Kowalewicz, Radom Technical University, Institute of Maintenance of
Vehicles and Machines, Al. Chrobrego 45, 26-600 Radom, Poland, Fax (48)48 440 74, e-mail:
kowala@kiux.man.radom.pl
Deadline: 2 Copies of a 1-Page Abstract Due January 31, 1999.

♦ AUGUST 1-5, 1999

34th INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE
Vancouver, British Columbia, Canada.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

AUGUST 1-6, 1999

5th WORLD CONGRESS OF THEORETICALLY ORIENTED CHEMISTS
London, UK.

Information: J. Gibson, WATOC '99, The Royal Society of Chemistry, Burlington House,
London W1V 0BN, UK, (171) 437 8656, Fax (171) 734 1227, e-mail: conferences@rsc.org
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♦ AUGUST 1-6, 1999

GORDON RESEARCH CONFERENCE ON QUANTUM CONTROL OF ATOMIC AND MOLECULAR MOTION
Plymouth State College, Plymouth NH.

Organizing Chairmen: R.J. Gordon and P. Brumer
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

♦ AUGUST 8-13, 1999

GORDON RESEARCH CONFERENCE ON DYNAMICS AT SURFACES
Proctor Academy, Andover NH.

Organizing Chairman: A. Kleyn
Information: Gordon Research Center, University of Rhode Island, P.O. Box 984, West
Kingston, RI 02892, (401) 783-4011, Fax (401) 783-7644, e-mail: grc@grcmail.grc.uri.edu,
http://www.grc.uri.edu

AUGUST 14-17, 1999

33rd ASME NATIONAL HEAT TRANSFER CONFERENCE
Albuquerque NM.

This Conference will Include a Symposium on Heat Transfer in Combustion and Fire. Topics
will Include:
• Radiation and Heat Transfer
• Fundamentals of Combustion
• Practical Combustion
• Combustion Instrumentation and Diagnostics
• Open Forum on Combustion
• Definition of a Model Problem for Experiments and Digital Computing of Fires
Information: M. di Marzo, Mechanical Engineering Department, University of Maryland-
College Park, MD, 20742, (301) 405-5257, Fax (301) 314-9477, e-mail: marino@eng.umd.edu,
http://www.asme.org/conf/

♦ AUGUST 14-19, 1999

IUPAC CONGRESS ON FRONTIERS IN CHEMISTRY
Berlin, Germany.

Information: Gesellschaft Deutscher Chemiker GDCh, P.O. Box 90 04 40, D-60444, Frankfurt
am Main, Germany, 49 69 7917 358/360/366, Fax 49 69 7917 475, e-mail: tg@gdch.de

♦ AUGUST 15-20, 1999

25th INTERNATIONAL SYMPOSIUM ON FREE RADICALS
Flagstaff AZ.

Information: T.A. Miller, The Ohio State University, Web Site: http://frs.mps.ohio-state.edu/frs
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AUGUST 16-19, 1999

5th INTERNATIONAL SYMPOSIUM ON SELF-PROPAGATING HIGH TEMPERATURE SYNTHESIS
Moscow, Russia.

Information: Organizing Committee, Institute of Structural Macrokinetics and Materials
Science, Russian Academy of Sciences, 7(095)962 80 08, Fax 7(095)962 80 40, e-mail:
shs99@ism.ac.ru or merzh@isman0.unicon.msk.su, http://www.ism.ac.ru/SHS99.html

AUGUST 18-21, 1999

1st INTERNATIONAL CONFERENCE ON ENGINEERING THERMOPHYSICS
Beijing, China.

Topics will Include:
• Advanced Thermodynamic Cycles and New Energy Systems
• Aerothermodynamics in Turbomachinery and Other Internal Flow Devices
• Heat and Mass Transfer and Heat Exchangers
• Combustion
• Multiphase Flow Problems
• Thermophysics Measurements
• Environmental Problems Related with Thermophsics
• All Other Related Topics
Information: Ms. H. Ke, Chinese Society of Engineering Thermophysics, P.O. Box 2706,
Beijing 100080, China, (8610) 62566816, Fax (8610) 62555581, e-mail: xjz@etpserver.etp.ac.cn

♦ AUGUST 22-26, 1999

218th NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
New Orleans LA.

Division of Fuel Chemistry:
• Tutorial on Advanced Analytical Methods for Fossil Fuels and Products

R.E. Winans, Chemistry Division, Argonne National Laboratory, 9700 S. Cass Avenue,
Argonne, IL 60439, e-mail: rewinans@anl.gov

• Molecular and Network Structures of Coal
M. Iino, Institute of Chemical Reaction Science, Tohoku University, Katahira 2-1-1 Aoba-
Ku, Sendai 980, Sendai, Japan, e-mail: iino@icrs.tohoku.ac.jp; R.E. Winans, Chemistry
Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, e-mail:
rewinans@anl.gov

• Hydrogen Production, Storage, and Utilization
C. Gregoire-Padro, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden,
CO 80401, (303) 275-2919.
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• Chemistry of Reactive Intermediates and Modeling in Hydrocarbon Conversion
J.A. Franz, M.T. Klein, Rutgers, State University of New Jersey, College of Engineering,
Office of the Dean, 98 Brett Road, Piscataway, NJ 08854, (732) 445-2214, Fax (732) 445-5313,
e-mail: mtklein@email.eng.rutgers.edu

• Recent Advances in Fuel Cells
M.A. Wojtowicz, Advanced Fuel Research Inc., 87 Church Street, East Hartford, CT 06108,
(860) 528-9806 ext. 142, Fax (860) 528-0648, e-mail: marek@afrinc.com

Division of Physical Chemistry:
• Imaging in Chemical Dynamics

A. Suits, Department of Chemistry, University of California, Berkeley, CA 94720, (510) 486-
4754, Fax (510) 486-5311, e-mail: agsuits@lbl.gov; R. Continetti, Department of Chemistry
and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0314,
(619) 534-5999, Fax (619) 534-7042, e-mail: rcontinetti@ucsd.edu

• Electronically Nonadiabatic Processes in Gaseous, Cluster, and Condensed Media
L.J. Butler, Department of Chemistry, University of Chicago, 5640 S Ellis Avenue, Chicago,
IL 60637, (773) 702-7206, Fax (773) 702-5863, e-mail: ljb4@midway.uchicago.edu; D.G.
Truhlar, Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, (612)
624-7555, Fax (612) 626-9390, e-mail: truhlar@umn.edu

• Water Clusters, Liquid Water, and Ice: Water in Biological Systems & Heterogeneous
Atmospheric Processes
M. Johnson, Department of Chemistry, Yale University, 225 Prospect Street, New Haven,
CT 06520, (203) 432-3916, Fax (203) 432-6144, e-mail: johnson@cluster.chem.yale.edu;
R. Saykally, Department of Chemistry, University of California, Berkeley CA 94720, (510)
642-8269, Fax (510) 642-8369, e-mail: saykally@cchem.berkeley.edu

• Chemical Waves, Fronts and Patterns
J. Pojman, Department of Chemistry and Biochemistry, University of Southern Mississippi,
Hattiesburg, MS 39406, (601) 266-5035, Fax (601) 266-6075, e-mail: john.pojman@usm.edu;
I. Epstein, Department of Chemistry, Brandeis University, Mail stop 134, Waltham, MA
02254, (781) 736-2101, Fax (781) 736-3457, e-mail: epstein2@binah.cc.brandeis.edu; V.
Volpert, Laboratoire d'analyse numirique, University Lyon I, Batiment 101, 43, bd du 11
Novembre 1918, 69622 Villeubanne Cedex, France, 33-472-448317, Fax 33-472-448053,
e-mail: volpert@lan1.univ-lyon1.fr

Deadline: Four Copies of Abstract (Original on ACS Abstract Form) Due to Symposium Chair
by March 15, 1999. Preprints are Due by April 15, 1999.

AUGUST 22-26, 1999

14th OZONE WORLD CONGRESS
Dearborn MI.

Information: M. Istok, IOA/PAG Executive Director, 31 Strawberry Hill Avenue, Stamford, CT
06902, (203) 348-3542, Fax (203) 967-4845, e-mail: mistok@i-2000.com, or mistok@int-ozone-
assoc.org
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AUGUST 23-27, 1999

12th INTERNATIONAL CONFERENCE ON FOURIER TRANSFORM SPECTROSCOPY
Waseda University, Tokyo, Japan.

Information: ICOFTS-12 Conference Office, c/o Koichi Itoh, General Chairman, Department of
Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169,
Japan, http://www.chem.waseda.ac.jp/icofts/

♦ AUGUST 29-SEPTEMBER 3, 1999

ENGINEERING FOUNDATION CONFERENCE ON ENVIRONMENTAL TECHNOLOGY FOR OIL POLLUTION:
REMEDIATION AND POLLUTION PREVENTION
Jurata, Poland.

Organizing Chairmen: J. Hupka and J. Miller
Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441.

SEPTEMBER 5-9, 1999

15th EUROPEAN CONFERENCE ON THERMOPHYSICAL PROPERTIES
Wurzburg, Germany.

Information: J. Fricke, Physikalisches Institut der Universitat, Am Hubland, D-97074
Wurzburg, Germany, e-mail: ectp@zae.uni-wuerzburg.de

SEPTEMBER 12-15, 1999

1st INTERNATIONAL SYMPOSIUM ON TURBULENCE AND SHEAR FLOW PHENOMENA
Santa Barbara CA.

Information: S. Banerjee, Department of Chemical Engineering, University of California at
Santa Barbara, Santa Barbara, CA 93106, (805) 893 3456, Fax (805) 893 4731, e-mail:
tsfp@engineering.ucsb.edu

♦ SEPTEMBER 12-15, 1999

6th INTERNATIONAL CONFERENCE ON METHODS AND APPLICATIONS OF FLUORESCENCE
SPECTROSCOPY
Paris, France.

Information: B. Valeur, MAFS6-Conservatoire National des Arts et Metiers, 292 rue Saint-
Martin, F-75141 Paris Cedex 03, France, 33 01 40 27 23 89, Fax 33 01 40 27 23 62, e-mail:
mafs6@cnam.fr, http://www.lbpa.ens-cachan.fr/photobm/mafs6
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♦ SEPTEMBER 12-17, 1999

10th INTERNATIONAL CONFERENCE ON COAL SCIENCES: PROSPECT FOR COAL SCIENCE IN THE 21ST
CENTURY
Taiyuan, Shanxi

Topics will Include:
• Fundamentals and General Aspects
• Combustion and Conversion Science
• Chemicals and Materials from Coal
• Coal Preparation and Beneficiation
• Environment Aspects
Information: L. Zhou, 10th ICCS Secretariat, Institute of Coal Chemistry, Chinese Academy of
Sciences, P.O. Box 165, Tiayuan, Shanxi, 030001, P.R. China, Phone/Fax (86) 351-4048967,
e-mail: iccs99@ms.sxicc.ac.cn, http://www.sxicc.ac.cn

SEPTEMBER 17-22, 1999

PHOTONICS EAST
Boston MA.

Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

♦ SEPTEMBER 19-24, 1999

ENGINEERING FOUNDATION CONFERENCE ON MICROGRAVITY FLUID PHYSICS AND HEAT TRANSFER
Oahu HI.

Organizing Chairpersons: V. Dhir, J. Straub and Y. Fujita
Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441.

♦ SEPTEMBER 19-24, 1999

5th ENGINEERING FOUNDATION CONFERENCE ON THE CONTROL OF PARTICULATE PROCESSES
Queensland, Australia.

Organizing Chairman: J. Litster
Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441.

SEPTEMBER 25-OCTOBER 1, 1999

INTERDISCIPLINARY LASER SCIENCE CONFERENCE AND THE ANNUAL MEETING OF THE OPTICAL
SOCIETY OF AMERICA
Santa Clara CA.

Information: Meetings Department, Optical Society of America, 201 Massachusetts Avenue,
Washington, DC 20036, (202) 223-8130.
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♦ OCTOBER 4-8, 1999

FULLERENES AND ATOMIC CLUSTERS
St. Petersburg, Russia.

Information: e-mail: fuller@vul.ioffe.rssi.ru, Web Site: http://www.ioffe.rssi.ru/IWFAC99/index.html

♦ OCTOBER 5-8, 1999

GASEOUS ELECTRONICS CONFERENCE
Norfolk VA.

Information: L. Vuskovic, Old Dominion University, e-mail: lxv100f@oduvm.cc.odu.edu

OCTOBER 6-9, 1999

35th WESTERN REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Ontario CA.

Information: V.L. Barrett, Sunkist Growers, 760 East Sunkist Street, Ontario, CA 91761,
(909) 933 2291, Fax (909) 933 2453, e-mail: vbarrett@isdnt.sunkist-ppd.com

OCTOBER 17-20, 1999

51st SOUTHEAST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Knoxville TN.

Information: C. Feigerle, University of Tennessee, Department of Chemistry, Knoxville, TN
37996, (615) 974-2129, e-mail: reglmtgs@acs.org

OCTOBER 17-22, 1999

JOINT INTERNATIONAL MEETING OF THE ELECTROCHEMICAL SOCIETY
Honolulu HI.

Topics will Include:
• Corrosion
• Plasma Etching Processes
• Diamond Formation and Materials
• Fullerenes
• Fuel Cells
Information: http://www.electrochem.org/meetings
Deadline: Abstracts Due by May 14, 1999.

OCTOBER 21-23, 1999

JOINT 55th SOUTHWEST/15th ROCKY MOUNTAIN REGIONAL MEETING OF THE AMERICAN CHEMICAL
SOCIETY
El Paso, TX.

Information: K. Pannell, Chemistry Department, University of Texas, El Paso, TX 79968,
(915) 747 5796, Fax (915) 747 5748 e-mail: kpannel@utep.edu
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♦ OCTOBER 24-27, 1999

FIRE RETARDANT CHEMICAL ASSOCIATION MEETING
New Orleans LA.

Information: FRCA, 851 New Holland Avenue, P.O. Box 3535, Lancaster, PA 17604,
(717) 219-5616.

♦ OCTOBER 24-28, 1999

6th ENGINEERING FOUNDATION CONFERENCE ON THE PRESENT AND FUTURE ENGINES FOR
AUTOMOBILES
Orvieto, Italy.

Organizing Chairman: R. Rinolfi, T. Kamimoto and D. Foster
Information: United Engineering Foundation, Meetings Department, Three Park Avenue,
27th Floor, New York, NY 10016, (212) 591-7836, Fax (212) 591-7441.

OCTOBER 24-29, 1999

26th ANNUAL CONFERENCE OF THE FEDERATION OF ANALYTICAL CHEMISTRY AND SPECTROSCOPY
SOCIETIES
Vancouver, British Columbia, Canada.

Information: Division of Analytical Chemistry, FACSS, (505) 820-1648, Fax (505) 989-1073,
http://FACSS.org/info.html

♦ OCTOBER 25-28, 1999

INTERNATIONAL FUEL AND LUBRICANTS FALL MEETING AND EXPOSITION OF THE SOCIETY OF
AUTOMOTIVE ENGINEERS
Toronto, Ontario, Canada.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

OCTOBER 27-29, 1999

34th MIDWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Quincy IL.

Information: H.D. Wohlers, Truman State University, Science Hall, 100 East Normal,
Kirksville, MO63501, (816) 785 4625, Fax (816) 785 4045, e-mail: wohlers@truman.edu

♦ NOVEMBER 7-9, 1999

SOUTHEASTERN SECTION MEETING OF THE AMERICAN PHYSICAL SOCIETY
Chapel Hill NC.

Information: T. Clegg, e-mail: clegg@TUNL.tunl.DUKE.edu, or the American Physical Society,
Meetings Department, One Physics Ellipse, College Park, MD 20740, (301) 209-3280, Fax (301)
209-0867, http://www.aps.org
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♦ NOVEMBER 14-19, 1999

1999 ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION: SYMPOSIUM
ON FIRE AND COMBUSTION SYSTEMS
Nashville TN.

Topics will Include:
• Combustion in Practical Systems
• Turbulence/Radiation Interactions
• Generation of Soot and Species
• Microgravity Combustion
• Droplet and Spray Combustion
• Fire Growth and Suppression
• Diagnostic Developments for Fire and Combustion Systems
• Combustion Synthesis of Materials
Information: W. Gill, STS Certification Environments, P.O. Box 5800, Mail Stop 0853, Sandia
National Laboratories, Albuquerque, NM 87185, (505) 845-3193, Fax (505) 844-0078, e-mail:
wgill@sandia.gov, Web site: http://www.asme.org/conf/congress99/
Deadline: Abstracts Due by January 29, 1999

NOVEMBER 14-19, 1999

EASTERN ANALYTICAL SYMPOSIUM
Somerset NJ.

Information: S. Gold, Eastern Analytical Symposium, P.O. Box 633, Montchanin, DE 19710,
(302) 738-6218, Fax (302) 738-5275, http://www.eas.org

NOVEMBER 14-19, 1999

ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION
Nashville TN.

Information: P. Pfund, Conference Chair, Babcock and Wilcox, 1562 Beeson Street, Alliance,
OH 44601, e-mail: phil.a.pfund@mcdermott.com

NOVEMBER 21-23, 1999

52nd MEETING OF THE AMERICAN PHYSICAL SOCIETY, DIVISION OF FLUID DYNAMICS
New Orleans LA.

Information: M. Gad-el-Hak, Department of Aerospace and Mechanical Engineering,
University of Notre Dame, Notre Dame, IN 46556, e-mail: mohamed.gad-el-hak.1@nd.edu

♦ NOVEMBER 29-30, 1999

SPQ-99/EUROPE: SPECTROSCOPY IN PROCESS AND QUALITY CONTROL
London, UK.

Information: S. Roberts, Advanstar Communications, Advanstar House, Sealand Road,
Chester CH1 4RN, UK, (44) 1244 378 888, Fax: (44) 1244 370 011, e-mail:
sroberts@advanstar.com
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DECEMBER 7-9, 1999

8th INDIAN SOCIETY FOR MASS SPECTROMETRY SYMPOSIUM
Hyderabad, India.

Information: S.K. Aggarwal, Secretary, ISMAS and Head, Mass Spectrometry Section, Fuel
Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, Fax
(91) 22-556-0750, e-mail: skaggr@magnum.barc.ernet.in

♦ JANUARY 10-15, 2000

WINTER CONFERENCE ON PLASMA SPECTROCHEM
Fort Lauderdale FL.

Information: R. Barnes, ICP Info Newsletter, P.O. Box 666, Hadley, MA 01003, e-mail:
winterconf@chem.umass.edu

♦ JANUARY 22-28, 2000

PHOTONICS WEST
San Jose CA.

Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

♦ MARCH 6-9, 2000

SAE INTERNATIONAL CONGRESS AND EXPOSITION
Detroit MI.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

♦ MARCH 20-24, 2000

MARCH MEETING OF THE AMERICAN PHYSICAL SOCIETY
Minneapolis MN.

Information: American Physical Society, Meetings Department, One Physics Ellipse, College
Park, MD 20740, (301) 209-3280, Fax (301) 209-0867, http://www.aps.org

♦ MARCH 26-31, 2000

219th NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
San Francisco CA.

Division of Fuel Science:
• Fuel Science in the Year 2000: Where Do We Stand, Where Do We Go From Here?

G.P. Huffman, 533 S. Limestone Street, Suite 111, University of Kentucky, Lexington, KY
40506-0043, (606) 257-4027, Fax (606) 257-7215 e-mail: cffls@pop.uky.edu
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• Advances in F-T Chemistry
B.H. Davis, Center for Applied Energy Research, University of Kentucky, Lexington, KY
40511, (606) 257-0251, Fax (606) 257-0302, e-mail: davis@alpha.caer.uky.edu

• Molecular Modeling of Solid-Fuel Reactions
L.R. Radovic, Fuel Science Program, Pennsylvania State University, 217 Academic Projects
Building, University Park, PA 16802, (814) 863-0594, Fax (814) 865-3075, e-mail:
lrr3@psu.edu

• Applications of X-ray and Gamma Ray Techniques in Fuel Science
K.A. Carrado, CHM/200, 9700 S. Cass Avenue, Argonne National Laboratory, Argonne, IL
60439-4831, (630) 252-7968, Fax (630) 252-9288, e-mail: kcarrado@anl.gov

Division of Petroleum Chemistry:
• New Chemistry of Fuel Additives

D. Daly, Fuel Products, Strategic Technology, Lubrizol Co., 29400 Lakeland Blvd., Wickliffe,
OH 44092, (440) 943-1200 ext. 4261, Fax (440) 943-9022, e-mail: dtd@lubrizol.com

• CO2 Conversion and Utilization in Refinery and Chemical Processing
C. Song, Pennsylvania State University, 209 Academic Projects Building, University Park, PA
16802, (814) 863-4466, Fax (814) 865-3075, e-mail: csong@psu.edu; A.M. Gaffney, DuPont
Central R&D, Experimental Station, P.O. Box 80262, Wilmington, DE 19880, (302) 695-1800,
Fax (302) 695-8347, e-mail: anne.m.gaffney@usa.dupont.com

Division of Physical Chemistry:
• Physical Chemistry at High Pressure and Temperature

A.P. Alivisatos, Department of Chemistry, University of California, Berkeley CA 94720, (510)
643-7371, Fax (510) 642-6911, e-mail: alivis@uclink4.berkeley.edu; R. Jeanloz, Department of
Geology & Geophysics, University of California, Berkeley CA 94720, (510) 642-2639, Fax (510)
643-9980, e-mail: jeanloz@uclink.berkeley.edu

• Atmospheric Chemistry (Harold Johnston Festschrift)
C.E. Miller, Department of Chemistry, Haverford College, Haverford, PA 19041,
(610) 896-1388, Fax (610) 896-4904, e-mail: cmiller@haverford.edu

Information: From the Individual Chairpersons or from Meetings Department, American Chemical
Society, 1155 - 16th Street, NW, Washington, DC 20036, (202) 872-4396, Fax (202) 872-6128, e-mail:
natlmtgs@acs.org
Deadline: 4 Copies of 150-Word Abstract (Original on ACS Abstract Form to Symposium Organizer
by August 1, 1999.

♦ MARCH 26-31, 2000

CORROSION/2000
Orlando FL.

Information: NACE Headquarters, Meetings Department, P.O. Box 218340, Houston, TX
77218, (281) 228-6200, Fax (281) 228-6300, http://www.nace.org

MAY 7-12, 2000

CLEO/QELS 2000
San Francisco CA.

Information: Meetings Department, American Physical Society, One Physics Ellipse, College
Park, MD 20740, (301) 209-3286, http://www.osa.org/mtg_conf, http://physics.wm.edu/~cooke/dis/dis.html
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♦ MAY 14-19, 2000

197th MEETING OF THE ELECTROCHEMICAL SOCIETY
Toronto, Ontario, Canada.

Topics Include:
• General Session on Corrosion
• Plasma Processing
• 15th International Conference on Chemical Vapor Deposition
• Sensors for Energy Technologies
Information: http://www.electrochem.org/meetings

♦ MAY 16-19, 2000

33rd MIDDLE ATLANTIC REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Newark DE.

Information: G.L. Trainor, DuPont Pharmaceuticals Co., P.O. Box 80353, Wilmington, DE
19880, (302) 695-3580, Fax (302) 695-8344, e-mail: trainogl@carbon.dmpc.com

♦ MAY 17-19, 2000

32nd CENTRAL REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Covington KY.

Information: R. D'Alonzo, Procter & Gamble, Sharon Woods Technical Center, 11450 Grooms
Road, Cincinnati, OH 45242, (513) 626-1977, Fax (513) 626-5145, e-mail: dalonzorp@pg.com

♦ JUNE 4-7, 2000

32nd GREAT LAKES REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Fargo ND.

Information: G.J. McCarthy, North Dakota State University, Department of Chemistry, Ladd
Hall 104B, Fargo, ND 58105, (701) 231-7193, Fax (701) 231-8883, e-mail:
gmccarth@prarie.nodak.edu

♦ JUNE 8-10, 2000

JOINT 55th NORTHWEST/16th ROCKY MOUNTAIN REGIONAL MEETING OF THE AMERICAN CHEMICAL
SOCIETY
Idaho Falls ID.

Information: E.G. Meyer, 214 Arts & Sciences, University of Wyoming, Laramie, WY 82071,
(307) 766-5445.

♦ JUNE 18-21, 2000

29th NORTHEAST REGIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Storrs CT.

Information: G. Epling, University of Connecticut, 215 Glenbrook Road, Storrs, CT 06269,
(860) 486-3214, Fax (860) 486-2981, e-mail: epling@nucleus.chem.uconn.edu
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♦ JUNE 18-23, 2000

OPTICS IN COMPUTING
Quebec City, Quebec, Canada.

Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

♦ JUNE 19-20, 2000

CEC/SAE FUELS AND LUBRICANTS SPRING MEETING AND EXPOSITION
Le Palais des Congress, Paris, France.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, http://www.sae.org

JULY 23-28, 2000

ENERGEX 2000: 8th INTERNATIONAL ENERGY FORUM
Las Vegas NV.

Topics will Include:
• Renewable Energies
• Clean Coal Technologies
• Fossil Fuels
• Energy and Economics
• Climatic Change
• International Law
• General Topics
• International Reports
• Nuclear Energy
• Architecture
Information: P. Catania, Faculty of Engineering, University of Regina, Regina, SK S4S 0A2,
Canada, (306) 585-4363, Fax (306) 585-4855, e-mail: peter.catania@uregina.ca,
http://www2.regina.ism.ca/ief/index/htm or http://www.energysource.com/ief/updates/

♦ JULY 30-AUGUST 4, 2000

SPIE ANNUAL MEETING
San Diego CA.

Information: Meetings Department, SPIE, P.O. Box 10, Bellingham, WA 98227, (360) 676-3290,
Fax (360) 647-1445, e-mail: spie@spie.org, http://www.spie.org

♦ JULY 30-AUGUST 4, 2000

28th INTERNATIONAL SYMPOSIUM ON COMBUSTION
Edinburgh, Scotland.

Information: S.S. Terpack, The Combustion Institute, 5001 Baum Boulevard, Suite 635,
Pittsburgh, PA 15212, (412) 687-1366, Fax (412) 687-0340, e-mail: combust@telerama.lm.com
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♦ AUGUST 20-24, 2000

220th NATIONAL MEETING OF THE AMERICAN CHEMICAL SOCIETY
Washington DC.

Division of Fuel Chemistry:
• 1990 Clean Air Act Amendments: A 10-Year Assessment

J.J. Helble, University of Connecticut, Department of Chemical Engineering, U-222, Storrs,
CT 06269, (860) 486-4602, Fax (860) 486-2959, e-mail: helble@eng2.uconn.edu

• Inorganics in Fossil Fuels, Waste Materials, and Biomass: Characterization, Combustion
Behavior, and Environmental Issues
C.L. Senior, Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810,
(978) 689-0003, Fax (978) 689-3232, e-mail: senior@psicorp.com

• Waste Material Recycling for Energy and Other Applications
S.V. Pisupati, Fuel Science Program, Pennsylvania State University, 404 Academic Projects
Building, University Park, PA 16802, (814) 865-0874, Fax (814) 863-8892, e-mail:
sxp17@psu.edu

• Fossil Fuels and Global Climate/CO2 Abatement
R. Warzinski, USDOE/FETC, Box 10940, Building 83-324, Pittsburgh, PA 15236, (412) 892-
5863, e-mail: warzinsk@fetc.doe.gov

Division of Petroleum Chemistry:
• Emission Control in Petroleum Processing

P. O'Connor, U.S. Ozkan, Department of Chemical Engineering, Ohio State University, 140
W. 19th Avenue, Columbus, OH 43210, (614) 292-6623, Fax (614) 292-3769, e-mail:
ozkan.1@osu.edu

• Structure of Jet Fuels VI
W.E. Harrison, Department of the Air Force, WL/POSF, Building 490, Area B, 1790 Loop
Road N., Wright-Patterson AFB, OH 45433, (937) 255-6601, Fax (937) 255-1125, e-mail:
harriswe@wl.pafb.af.mil

Information: From the Individual Chairpersons or from the Meetings Department, American
Chemical Society, 1155 - 16th Street, NW, Washington, DC 20036, (202) 872-4396, Fax (202) 872-
6128, e-mail: natlmtgs@acs.org

♦ AUGUST 22-25, 2000

9th INTERNATIONAL (MILLENNIUM) SYMPOSIUM ON FLOW VISUALIZATION
Edinburgh, Scotland.

Information: I. Grant, Heriot-Watt University, Edinburgh, Scotland, EH10 5PJ, UK,
(44) 1314478800, Fax (44) 1314478660, e-mail: 9misfv@ode-web.demon.co.uk, Web Site:
http://www.ode-web.demon.co.uk/9misfv
Deadline: Abstract Template should be Downloaded from the Web. 4 Pages or Less to be
Submitted by December 12, 1999. Final Manuscripts Due May 15, 2000.

♦ SEPTEMBER 10-15, 2000

CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND THE INTERNATIONAL QUANTUM
ELECTRONICS CONFERENCE (IQEC)
Nice, France.

Information: Optical Society of America, Meetings Department, 2010 Massachusetts Ave NW,
Washington, DC 20036, (202) 223-0920, e-mail:  confserv@osa.org
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♦ SEPTEMBER 19-21, 2000

THE HYDROGEN ENERGY FORUM 2000
Munich, Germany.

Information: The Future Energies Forum, "Forum fur Zukunftsenergien", Godesberger Allee
90, D-53175 Bonn, Germany, Fax 49(0) 228-959 56-50, e-mail: energie.forum@t-online.de

♦ SEPTEMBER 22-30, 2000

27th ANNUAL CONFERENCE OF THE FEDERATION OF ANALYTICAL CHEMISTRY AND SPECTROSCOPY
SOCIETIES
Nashville TN.

Information: Division of Analytical Chemistry, FACSS, (505) 820-1648, Fax (505) 989-1073,
Web Site: http://FACSS.org/info.html

♦ OCTOBER 16-19, 2000

INTERNATIONAL FUEL AND LUBRICANTS FALL MEETING AND EXPOSITION OF THE SOCIETY OF
AUTOMOTIVE ENGINEERS
Baltimore MD.

Information: Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale,
PA 15096, (724) 776-4841, Fax (724) 776-5760, e-mail: meetings@sae.org, Web Site:
http://www.sae.org

♦ NOVEMBER 13-18, 2000

EASTERN ANALYTICAL SYMPOSIUM OF THE AMERICAN CHEMICAL SOCIETY
Somerset NJ.

Information: S. Gold, Eastern Analytical Symposium, P.O. Box 633, Montchanin, DE 19710,
(302) 738-6218, Fax (302) 738-5275, Web Site: http://www.eas.org

♦ DECEMBER 6-8, 2000

JOINT 52nd SOUTHEAST/56th SOUTHWEST REGIONAL MEETING OF THE AMERICAN CHEMICAL
SOCIETY
New Orleans LA.

Information: A. Pepperman, SRRC, USDA-ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA
70179, (208) 286-4510, Fax (208) 286-4367, e-mail: abpep@nola.srrc.usda.gov

♦ DECEMBER 14-19, 2000

INTERNATIONAL CHEMICAL CONGRESS OF PACIFIC BASIN SOCIETIES
Honolulu HI.

Information: Meetings Department, American Chemical Society, 1155 - 16th Street, NW,
Washington, DC 20036, (202) 872-4396, Fax (202) 872-6128, e-mail: natlmtgs@acs.org
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CURRENT BIBLIOGRAPHY RELEVANT TO
FUNDAMENTAL COMBUSTION
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Keith Schofield, ChemData Research, P.O. Box 40481
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e-mail: combust@mrl.ucsb.edu
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2.  LIQUEFACTION/GASIFICATION

78415. Fouda, S.A., "Liquid Fuels from Natural Gas: Natural Gas is Cleaner and
More Plentiful Than Oil. New Ways to Convert It to Liquid Form May
Soon Make It Just as Cheap and Convenient to Use in Vehicles,"
Scientific Am. 278(3), 92-95 (1998).

Liquefaction
Natural Gas
Technologies
Review

78416. Periana, R.A., D.J. Taube, S. Gamble, H. Taube, T. Satoh and H. Fujii,
"Platinum Catalysts for the High Yield Oxidation of Methane to a
Methanol Derivative," Science 280, 560-564 (1998).

Liquefaction
CH4 /CH3OH
Pt Catalysts
High Yields

78417. Dong, Y., and M. Steinberg, "HYNOL: An Economical Process for
Methanol Production from Biomass and Natural Gas with Reduced CO2

Emission," Int. J. Hydrogen Energy 22, 971-977 (1997).

Liquefaction
Biomass
CH3OH Formation
Closed Cycle
Process

(78691) Biomass/Fossil Fuel Conversion to CH3OH and C(s), CO2 Mitigation
Concept

Liquefaction

78418. Ramdoss, P.K., and A.R. Tarrer, "High Temperature Liquefaction of
Waste Plastics," Fuel 77, 293-299 (1998).

Liquefaction
Plastic Wastes
Gas/Oil Yields

(78919) Pyrolysis, Plastic Wastes, Yields Gas/Oil
Product Analysis

78419. Yan, H.-m., C. Heidenreich and D.-k. Zhang, "Mathematical Modeling of
a Bubbling Fluidized Bed Coal Gasifier and the Significance of ‘Net
Flow,'" Fuel 77, 1067-1079 (1998).

Gasifier
Coal
Fluidized Bed
Numerical
Model

78420. Ye., D.P., J.B. Agnew and D.K. Zhang, "Gasification of a South
Australian Low-Rank Coal with Carbon Dioxide and Steam: Kinetics and
Reactivity Studies," Fuel 77, 1209-1219 (1998).

Gasification
Coal/CO2 /H2O
Kinetic Rates
Reactivities
Mineral Effects

78421. Cho, W., Y. Baek, D. Park, Y.C. Kim and M. Anpo, "The Conversion of
Natural Gas to Higher Hydrocarbons Using a Microwave Plasma and
Catalysts," Research Chem. Intermed 24, 55-66 (1998).

Fuel Conversion
CH4 /C2+

Microwave Discharge
Catalyst Effects
Product Yields

78422. Gil, J., M.P. Aznar, M.A. Caballero, E. Frances and J. Corella, "Biomass
Gasification in Fluidized Bed at Pilot Scale with Steam/Oxygen
Mixtures: Product Distribution for Very Different Operating Conditions,"
Energy Fuels 11, 1109-1118 (1997).

Gasification
Biomass
Fluidized Bed
Steam/O2

Product Yields
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78423 Pindoria, R.V., A. Megaritis, R.C. Messenbock, D.R. Dugwell and R.
Kandiyoti, "Comparison of the Pyrolysis and Gasification of Biomass:
Effect of Reacting Gas Atmosphere and Pressure on Eucalyptus Wood,"
Fuel 77, 1247-1251 (1998).

Gasification
Pyrolysis
Biomass
He,H2 ,CO2 ,H2O
Effects
Conversions

78424. Shiga, H., K. Shinda, K. Hagiwara, A. Tsutsumi, M. Sakurai, K. Yoshida
and E. Bilgen, "Large Scale Hydrogen Production from Biogas," Int. J.
Hydrogen Energy 23, 631-640 (1998).

Gasification
Biomass
H2 Product
Economics

78425. Turn, S., C. Kinoshita, Z. Zhang, D. Ishimura and J. Zhou, "An
Experimental Investigation of Hydrogen Production from Biomass
Gasification," Int. J. Hydrogen Energy 23, 641-648 (1998).

Gasification
Biomass
FB Reactor
H2 Product
Yields

78426. Rustamov, V.R., K.M. Abdullayev, F.G. Aliyev and V.K. Kerimov,
"Hydrogen Formation from Biomass Using Solar Energy," Int. J.
Hydrogen Energy 23, 649-652 (1998).

Gasification
Biomass
H2 Formation
Solar Catalytic
Pyrolysis

78427. Rapagna, S., N. Jand and P.U. Foscolo, "Catalytic Gasification of
Biomass to Produce Hydrogen Rich Gas," Int. J. Hydrogen Energy 23,
551-557 (1998).

Gasification
Biomass/H2O
Catalysis
H2 Formation
Yields

78428. Turn, S.Q., C.M. Kinoshita, D.M. Ishimura and J. Zhou, "The Fate of
Inorganic Constituents of Biomass in Fluidized Bed Gasification," Fuel
77, 135-146 (1998).

Gasification
Biomass
Fluidized Bed
Inorganic Species
Emissions
Ca,Na,K
Fe,Si,P,Cl

(78701) Gasification, Pyrolysis, Chlorine Release Biomass

3. BURNERS

(See also Section 21 for Burner Emissions and Incinerator
Performance)

78429. Peters, B., "Classification of Combustion Regimes in a Packed Bed of
Particles Based on the Relevant Time and Length Scales," Combust.
Flame 116, 297-301 (1999).

Packed Bed
Combustion
Transport/
Reaction Rates
Model
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78430. Hanby, V.I., and G. Li, "Simulated Combustion and Heat Transfer in Gas
Fired and Oil Fired Commercial Boilers," J. Inst. Energy 71, 64-70 (1998).

Commercial Boilers
Gas, Oil Fired
Heat Transfer
Emissions
1-D Model

78431. Costa, M., J.L.T. Azevedo and M.G. Carvalho, "Combustion
Characteristics of a Front-Wall Fired Pulverized Coal 300 MWe Utility
Boiler," Combust. Sci. Technol. 129, 277-293 (1997).

Pulverized Coal
Boiler
Front Wall Fired
Measurements
Emission Levels

78432. Smith, N.L., N.P. Megalos, G.J. Nathan, D.K. Zhang and J.P. Smart,
"Precessing Jet Burners for Stable and Low NOx Pulverized Fuel Flames:
Preliminary Results from Small-Scale Trials," Fuel 77, 1013-1016 (1998).

Precessing
Jet Burners
Pulverized Coal
CO,Carbon
Reductions

78433. Bubenchikov, A.M., A.V. Starchenko, "Numerical Analysis of the
Aerodynamics and Combustion of a Turbulent Pulverized Coal Burner
Jet," Combust. Expl. Shock Waves, Russia 33, 41-48 (1997).

Jet Burner
Pulverized Coal
Furnace
Turbulent
Combustion
Modeling

78434. Goh, Y.R., R.G. Siddall, V. Nasserzadeh, R. Zakaria, J. Swithenbank, D.
Lawrence, N. Garrod and B. Jones," J. Inst. Energy 71, 110-118 (1998).

Incinerator
Traveling Grate
Solid Waste
Model

78435. Fick, W., N. Syred, T. Klinge, A.J. Griffiths and T. O'Doherty, "Clean
and Efficient Combustion of Simulated Low-Calorific-Value Gases in
Swirl Burner/Furnace Systems," J. Inst. Energy 71, 12-20 (1998).

Swirl Burner
Low Calorific
Fuels
Axial Piloting
CO,NO
Emissions

78436. Hashimoto, T., K. Koyama and M. Yamagishi, "Hydrogen Combustion
Characteristics in a Model Burner with a Coaxial Injector," Int. J.
Hydrogen Energy 23, 713-720 (1998).

H2 Burner
Coaxial Injector
Swirl
Characterization

78437. Hackert, C.L., J.L. Ellzey and O.A. Ezekoye, "Combustion and Heat
Transfer in Model Two-Dimensional Porous Burners," Combust. Flame
116, 177-191 (1999).

Porous Burners
2 Geometries
2-D Models
Burning Rates

78438. Zhou, X.Y., and J.C.F. Pereira, "Numerical Study of Combustion and
Pollutants Formation in Inert Nonhomogeneous Porous Media,"
Combust. Sci. Technol. 130, 335-364 (1997).

Porous Burners
CH4 /Air
Heat Transfer
CO,NO Emissions
Modeling
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78439. Khan, Y.U., D.A. Lawson and R.J. Tucker, "Analysis of Radiative Heat
Transfer in Ceramic Lined and Ceramic Coated Furnaces," J. Inst. Energy
71, 21-26 (1998).

Ceramic Lined
Furnaces
Heat Transfer
Analysis
Material Optical
Property Effects

78440. Haidn, O.J., K. Frohlke, J. Carl and S. Weingartner, "Improved
Combustion Efficiency of a H2 /O2 Steam Generator for Spinning Reserve
Application," Int. J. Hydrogen Energy 23, 491-497 (1998).

Steam Generator
H2 /O2

Spinning Reserve
Automatic
Control Method

78441. Sugisita, H., H. Mori and K. Uematsu, "A Study of Thermodynamic Cycle
and System Configurations of Hydrogen Combustion Turbines," Int. J.
Hydrogen Energy 23, 705-712 (1998).

Turbines
Direct H2

Burnt Gas Driven
Closed Cycle
Efficiency
Analysis

78442. Sobiesiak, A., S. Rahbar and H.A. Becker, "Performance Characteristics
of the Novel Low-NOx Canadian Gas Research Institute Burner for Use
with High Air Preheat," Combust. Flame 115, 93-125 (1998).

Low NOx Burner
Performance
Fuel/Oxidant
Direct Injection
Method

78443. Srinivasan, R.A., S. Sriramulu, S. Kulasekaran and P.K. Agarwal,
"Mathematical Modeling of Fluidized Bed Combustion. II. Combustion of
Gases," Fuel 77, 1033-1049 (1998).

FBC
Volatiles
Combustion
Numerical Model

78444. Stubington, J.F., and D. Sasongko, "On the Heating Rate and Volatile
Yield for Coal Particles Injected into Fluidized Bed Combustors," Fuel 77,
1021-1025 (1998).

FBC
Coal Particle
Devolatilization
Heating Rates
Model

78445. Campos, J.B.L.M., O.D.S. Mota and A.M.F.R. Pinto, "Measurement of
Mass Transfer between the Bubble and Dense Phases in a Fluidized Bed
Combustor," Combust. Flame 116, 105-119 (1999).

FBC
Coke Particles
Mass Transfer
Bubble Formation
Measurements

(78460) Coal Char Combustion, Kinetic Rates, Pressure Effects PFBC

78446. Valmari, T., E.I. Kauppinen, J. Kurkela, J.K. Jokiniemi, G. Sfiris and H.
Revitzer, "Fly Ash Formation and Deposition During Fluidized Bed
Combustion of Willow," J. Aerosol Sci. 29, 445-459 (1998).

FBC
Biomass Fuels
Fly Ash
Formation
Composition
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78447. Lee, J.-K., H.-S. Chun, "Anthracite Coal Combustion in a Bench Scale
Two-Stage Swirl-Flow Fluidized Bed Combustor," J. Chem. Eng. Japan
30, 1125-1129 (1997).

FBC
Anthracite Coal
2-Stage
Swirl Flow
CO,NOx

Emissions

78448. Philippek, C., and J. Werther, "Co-combustion of Wet Sewage Sludge in a
Coal Fired Circulating Fluidized Bed Combustor," J. Inst. Energy 70, 141-
150 (1997).

FBC
Circulating
Coal/
Wet Sewage Sludge
Co-firing
Emissions

78449. Arena, U., A. Cammarota and M.L. Mastellone, "The Phenomenology of
Comminution in the Fluidized Bed Combustion of Packaging-Derived
Fuels," Fuel 77, 1185-1193 (1998).

FBC
Waste Derived
Fuel Testing
Particle
Combustion Times

78450. Latva-Somppi, J., M. Moisio, E.I. Kauppinen, T. Valmari, P. Ahonen, U.
Tapper and J. Keskinen, "Ash Formation During Fluidized Bed
Incineration of Paper Mill Waste Sludge," J. Aerosol Sci. 29, 461-480
(1998).

FBC
Incineration
Waste Sludge
Ash Formation
Mechanism

78451. Lorenz, H., and H. Rau, "A New Method for Investigating the
Combustion Behavior of Solid Fuels in FBC," Fuel 77, 127-134 (1998).

FBC
Solid Fuels
Biomass,Wastes
O2 Sensor
Burn-out Times
Diagnostic

78452. Lyngfelt, A., and B. Leckner, "Sulphur Capture in Circulating Fluidized
Bed Boilers: Decomposition of CaSO4 under Local Reducing Conditions,"
J. Inst. Energy 71, 27-32 (1998).

FBC
Circulating
CaSO4

Dissociation
SO2 Recapture
Conditions

4.  COAL, PARTICLE COMBUSTION/PYROLYSIS

(See also Section 3 for FBC and Section 21 for Coal Combustion
Emissions)

78453. Bykov, V.I., T.I. Vishnevskaya and N.M. Tsirul'nichenko, "Diffusive-
Kinetic Model of Combustion of Lignite Particles in Gas Flow," Combust.
Expl. Shock Waves, Russia 33, 425-430 (1997).

Lignite Particle
Combustion
Diffusive/Kinetic
Model
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78454. Yavuz, R., S. Kucukbayrak and A. Williams, "Combustion Characteristics
of Lignite/Water Slurries," Fuel 77, 1229-1235 (1998).

Lignite/H2O
Slurries
Single Droplet
Combustion
Efficiencies
Size Effects

78455. Tunik, Yu.V., "Modeling of Low Speed Combustion of a Methane/Air/
Coal Dust Suspension," Combust. Expl. Shock Waves, Russia 33, 431-438
(1997).

Coal Dust/
CH4 /Air
Combustion
Propagation
Modeling

78456. Maloney, D.J., R. Sampath and J.W. Zondlo, "Heat Capacity and
Thermal Conductivity Considerations for Coal Particles During the Early
Stages of Rapid Heating," Combust. Flame 116, 94-104 (1999).

Coal Particles
Flash Heating
Temperature
Profiles
Thermal Delays

78457. Sun, C.L., and M.Y. Zhang, "Ignition of Coal Particles at High Pressure
in a Thermogravimetric Analyzer," Combust. Flame 115, 267-274 (1998).

Coal Particles
Ignition
Temperatures
High Pressures

(78522) Ignition, Surrounding Volatile Matter Effects Coal Particle

78458. Hull, A.S., and P.K. Agarwal, "Estimation of Kinetic Rate Parameters for
Coal Combustion from Measurements for the Ignition Temperature,"
Fuel 77, 1051-1058 (1998).

Coal Reactivity
Ignition
Temperature
Correlation
Assessments

(78506) Devolatilization, IR Pyrometer 2-Color Temperatures Coal Particle

(78420) Steam Gasification, Kinetic Rates, Reactivities, Mineral Effects Coal/CO2 /H2O

(78419) Fluidized Bed, Numerical Model Coal Gasifier

78459. Levendis, Y.A., A. Atal, B. Courtemanche and J.B. Carlson, "Burning
Characteristics and Gaseous/Solid Emissions of Blends of Pulverized
Coal with Waste Tire-Derived Fuel," Combust. Sci. Technol. 131, 147-185
(1998).

Pulverized Coal/
Tire Waste
Blended Fuel
Combustion
T,Emissions
Performance

78460. MacNeil, S., and P. Basu, "Effect of Pressure on Char Combustion in a
Pressurized Circulating Fluidized Bed Boiler," Fuel 77, 269-275 (1998).

Coal Char
Combustion
PFBC
Kinetic Rates
Pressure Effects
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78461. Zhang, X., and E. Bar-Ziv, "A Novel Approach to Determine Thermal
Conductivity of Micron-Sized Fuel Particles," Combust. Sci. Technol. 130,
79-95 (1997).

Coal, Char
Particles
Thermal Conductivity
Photophoretic
Measuring Method

78462. Zevenhoven, R., and M. Hupa, "The Reactivity of Chars from Coal, Peat
and Wood Towards NO, With and Without CO," Fuel 77, 1169-1176
(1998).

Chars/NO
Interactions
CO Effects
Reactivities
Char Source/
Mineral Content
Effects

78463. Chen, N., and R.T. Yang, "Ab Initio Molecular Orbital Study of the
Unified Mechanism and Pathways for Gas-Carbon Reactions," J. Phys.
Chem. A. Mol., Spectrosc., Kinetics 102, 6348-6356 (1998).

C(s)/CO2 ,H2O,O2

Gasification
Surface Dynamic
Mechanisms
Energetics

78464. Liao, H., B. Li and B. Zhang, "Co-Pyrolysis of Coal with Hydrogen Rich
Gases. I. Coal Pyrolysis under Coke-Oven Gas and Synthesis Gas," Fuel
77, 847-851 (1998).

Hydropyrolysis
Coal/Syngas
Effectiveness

78465. Ohtsuka, Y., W. Zhiheng and E. Furimsky, "Effect of Alkali and Alkaline
Earth Metals on Nitrogen Release During Temperature Programmed
Pyrolysis of Coal," Fuel 76, 1361-1367 (1997).

Coal Pyrolysis
HCN,NH3 ,N2

Releases
NaOH,KOH,Ca(OH)2

Seeding Effects

(78918) Slow Pyrolysis, Oxidation, HCN, NH3 , NO, N2O Formation, CaCO3

Effects
Petroleum Coke

5.  SPRAY COMBUSTION

78466. Filho, F.F., "An Analytical Solution for the Quasi-Steady Droplet
Combustion," Combust. Flame 116, 302-306 (1999).

Droplet
Combustion
Analytical
Simple
Model

78467. Harari, R., and E. Sher, "Bimodal Drop Size Distribution Behavior in
Plain Jet Airblast Atomizer Sprays," Atomization Sprays 8, 349-362
(1998).

Sprays
Airblast Atomizer
Size
Distributions

78468. Greenberg, J.B., S. Cheatham and M. Matalon, "A Simple Model of a
Spray Diffusion Flame: Effects of Heat Loss and Differential Diffusion,"
Combust. Sci. Technol. 131, 277-303 (1998).

Spray
Diffusion Flame
Heat/Mass Transfer
Asymptotic
Numerical Models



9

78469. Iyer, V., and J. Abraham, "Penetration and Dispersion of Transient Gas
Jets and Sprays," Combust. Sci. Technol. 130, 315-334 (1997).

Spray Jets
Penetration
Vaporization
Modeling
Gas/Spray
Comparisons

78470. Tageldin, M.S., and B.M. Cetegen, "Development of Mixing and
Dispersion in an Isothermal, Droplet-laden, Confined Turbulent Mixing
Layer," Combust. Sci. Technol. 130, 131-169 (1997).

Liquid Droplets
Dispersion
Turbulent Mixing
PDA
Sizes,Velocities

78471. McIntosh, A.C., V. Gol'dshtein, I. Goldfarb and A. Zinoviev, "Thermal
Explosion in a Combustible Gas Containing Fuel Droplets," Combust.
Theory Modeling 2, 153-165 (1998).

Droplets/Gas
2-Phase
Ignition Delays
 Modeling

(78703) Rijke Flame Tube, CO, NO Emissions, Nozzle/Acoustic Effects C2H5OH Spray

78472. Connon, C.S., R. Dimalanta, C. Choi and D. Dunn-Rankin, "LIF
Measurements of Fuel Vapor in an Acetone Droplet Stream," Combust.
Sci. Technol. 129, 197-216 (1997).

(CH3)2CO Droplet
Stream
Interdroplet
Vapor Densities
LIF
Measurements

78473. Volchkova, G.N., P.A. Egoyants, V.K. Ikonnikov, A.I. Kuz'min and S.S.
Kharchenko, "Computational and Experimental Study of Fuel Oil
Burning with Excess-Oxidant Ratios Smaller than Unity," Combust. Expl.
Shock Waves, Russia 33, 409-417 (1997).

Droplet
Fuel Oil
Combustion
Burnout Model
Soot Role

(78586) Continuous Rotating Detonation Wave, Air Mixtures Kerosene/Diesel
Fuel Sprays

(78454) Slurries, Singlet Droplet Combustion, Efficiencies, Size Effects Lignite/H2O

78474. Sharma, D.K., S. Stephen and R. Natarajan, "Structure of Burning
n-Hexane Droplet by Moire Deflectometry," Combust. Sci. Technol. 131,
305-321 (1998).

Droplet Combustion
n-C6H14 /Air
Zone Measurements
Deflectometry

(78510) Doped C7H16 , Exciplex LIF Method Droplet
Temperatures

6.  METALS/PROPELLANTS/POLYMER COMBUSTION

78475. Merzhanov, A.G., "‘Solid' Flame Propagation in the Model
Heterogeneous System," Dokl. Phys. Chem. 353, 135-138 (1997).

Solid Phase
Combustion
Propagation
Heterogeneous
Systems
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78476. Merzhanov, A.G., A.N. Peregudov and V.T. Gontkovskaya,
"Heterogeneous Model of Solid Flame Combustion: A Numerical
Experiment," Dokl. Phys. Chem. 360, 158-160 (1998).

Solid Flame
Combustion
Heat Transfer
Plate Model

78477. Booty, M.R., J.K. Bechtold and G.A. Kriegsmann, "Microwave-Induced
Combustion: A One-Dimensional Model," Combust. Theory Modeling 2,
57-80 (1998).

Solid Combustion
Microwave
Heating,Ignition
Model

78478. Raymond, C.S., K.G. Shkadinsky and V.A. Volpert, "Gravitational Effects
on Liquid Flame Thermite Systems," Combust. Sci. Technol. 131, 107-129
(1998).

Solid Phase
Thermite Systems
Reactant Melting
Gravity Effects
Combustion Wave
Character

78479. Merzhanov, A.G., A.S. Rogachev, L.M. Umarov and N.V. Kir'yakov,
"Experimental Study of the Gas Phase Formed in the Process of Self-
Propagating High Temperature Synthesis," Combust. Expl. Shock Waves,
Russia 33, 439-447 (1997).

Solid Phase
Combustion
Metal/B,C
Released Gases
CO,CO2 ,H2 ,H2O
Impurities

78480. Basset, T., E. Daniel and J.C. Loraud, "Numerical and Parametric Study
of the Combustion of Aluminum Particles," Can. J. Chem. Eng. 75, 938-
948 (1997).

Al(s)
Particle
Combustion
Model Comparisons

78481. Fedorov, A.V., V.M. Fomin and S.I. Volkov, "Mathematical Model for the
Ignition of a Mixture of a Liquid Fuel and Solid Particles in Air,"
Combust. Expl. Shock Waves, Russia 33, 315-322 (1997).

Al(s)/RH
Hydrocarbon
Droplet Mixtures
Ignition
Combustion
Modeling

78482. Zhu, Y., and S. Yuasa, "Effects of Oxygen Concentration on Combustion
of Aluminum in Oxygen/Nitrogen Mixture Streams," Combust. Flame
115, 327-334 (1998).

Al(s)/O2 /N2

Ignition
Temperatures
Burning Rates
O2 Effects

78483. Fedorov, A.V., and T.A. Khmel', "Interaction of Detonation and
Rarefaction Waves in Aluminum Particles Dispersed in Oxygen,"
Combust. Expl. Shock Waves, Russia 33, 211-218 (1997).

Al(s)/O2

Detonation/
Rarefaction
Wave
Interactions
Model
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78484. Shkadinskii, K.G., N.I. Ozerkovskaya and V.V. Chernetsova, "Unsteady-
State Modes of the ‘Solid Flame' Propagation via the Gas Transport
Mechanism of Chemical Reaction," Dokl. Phys. Chem. 355, 220-222
(1997).

B/Mo
Solid Phase
Combustion
Self-Propagation
Model

78485. Morozov, Yu.G., M.V. Kuznetsov and A.G. Merzhanov, "Nonthermal
Effect of the Electric Field on Self-Propagating High Temperature
Synthesis," Dokl. Phys. Chem. 352, 69-71 (1997).

BaO2 /Cr2O3

Solid Phase
Combustion
Electric Field
Effects

78486. Ming, Q., M. Nersesyan, K. Ross, J.T. Richardson and D. Luss, "Reaction
Steps and Microstructure Formation During Self-Propagating High
Temperature Synthesis of La0.8Sr0.2CrO3 ," Combust. Sci. Technol. 128,
279-294 (1997).

Solid Phase
Combustion
La0.8Sr0.2CrO3

Synthesis
Temperatures
Optimization

78487. Abbud-Madrid, A., and M.C. Branch, "A Study of Heterogeneous and
Homogeneous Combustion of Bulk Metals in a Reduced Gravity
Environment," Bull. Soc. Chim. Belg. 106, 331-336 (1997).

Mg/O2

Ti/O2

Propagation
Burning Times
Reduced Gravity
Measurements

78488. Mukasyan, A.S., I.O. Khomenko and V.I. Ponomarev, "About
Nonuniqueness of Combustion Modes in the Heterogeneous Systems,"
Combust. Sci. Technol. 128, 215-229 (1997).

Nb/B/O2

Ti/N2 /O2

Two Phase
Combustion
Ignition
Temperature
Variations

78489. Vadchenko, S.G., and A.G. Merzhanov, "Heterogeneous Flame
Propagation Model," Dokl. Phys. Chem. 352, 40-42 (1997).

Nb(s)/N2

Layered
Thin Plates
Propagation
Model

78490. Mukasyan, A., A. Pelekh, A. Varma, A. Rogachev and A. Jenkins, "Effects
of Gravity on Combustion Synthesis in Heterogeneous Gasless Systems,"
AIAA J. 35, 1821-1828 (1997).

Solid Phase
Combustion
Ni/Al;Ti/C
Ni/Al/Ti/B
Propagation
Gravity Effects

78491. Hwang, S., A.S. Mukasyan and A. Varma, "Mechanisms of Combustion
Wave Propagation in Heterogeneous Reaction systems," Combust. Flame
115, 354-363 (1998).

Ni/Al
Ti(s)/Air
Combustion
Propagation
Wave Structure
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78492. Margolis, S.B., "Influence of Pressure-Driven Gas Permeation on the
Quasi-Steady Burning of Porous Energetic Materials," Combust. Theory
Modeling 2, 95-113 (1998).

Energetic Materials
Porous
Nitramines
Multiphase System
Combustion
Propagation
Model

78493. Ermolin, N.E., and V.E. Zarko, "Mechanism and Kinetics of the Thermal
Decomposition of Cyclic Nitramines," Combust. Expl. Shock Waves, Russia
33, 251-269 (1997).

HMX,RDX
Pyrolysis
Product Yields
Kinetic
Parameters

78494. Prasad, K., R.A. Yetter and M.D. Smooke, "An Eivenvalue Method for
Computing the Burning Rates of HMX Propellants," Combust. Flame 115,
406-416 (1998).

HMX
Propellants
Burning Rate
Predictive Model

78495. Engelen, K., L. Vanneste, M.H. Lefebvre and J. De Ruyck, "Pyrotechnic
Propellant for Nitrogen Gas Generator," Bull. Soc. Chim. Belg. 106, 349-
354 (1997).

KNO3 /NaN3

Pyrotechnic
N2 Generation
Fire Extinguishers
Role

78496. Grigor'ev, V.V., L.A. Lukyanchikov and E.P. Pruuel, "Ignition of PETN
Particles by a Gas-Detonation Wave," Combust. Expl. Shock Waves, Russia
33, 238-242 (1997).

PETN
Ignition
Detonation Wave
Induced
Particle Melting

78497. Gongwer, P.E., and T.B. Brill, "Thermal Decomposition of Energetic
Materials. 73. The Identity and Temperature Dependence of ‘Minor'
Products from Flash Heated RDX," Combust. Flame 115, 417-423 (1998).

RDX
Flash Pyrolysis
Trace Volatiles
Product FTIR

78498. Zhang, Y.-X., and S.H. Bauer, "Gas Phase Pyrolysis of 1,3,3-
Trinitroazetidine: Shock Tube Kinetics," J. Phys. Chem. A. Mol.,
Spectrosc., Kinetics 102, 5846-5856 (1998).

TNAZ
Pyrolysis
Unimolecular
Rate Constant
Products
Mechanism
Shock Tube

78499. Elomaa, M., L. Sarvaranta, E. Mikkola, R. Kallonen, A. Zitting, C.A.P.
Zevenhoven and M. Hupa, "Combustion of Polymeric Materials," Crit.
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19.  ENGINES/EMISSIONS

(See also Section 10 for Ignition)
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20.  PLUME/STACK CHEMISTRY/ATMOSPHERIC EMISSIONS
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21.  COMBUSTION EMISSIONS/NOX , SO2 CHEMISTRY, CONTROL

(See also Section 3 for Burner Emissions and Section 19 for Engine
Emissions)
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